
ELLIS HORWOOD SERIES IN ARTIFICIAL INTELLIGENCE

NEURAL NETWORKS IN
ARTIFICIAL INTELLIGENCE

ELLIS HORWOOD SERIES IN
ARTIFICIAL INTELLIGENCE

Series Editors: Professor JOHN CAMPBELL, Department
of Computer Science, University College London, and
Dr JEAN HAYES-MICHIE, Director of Knowledgelink
Limited; and the Turing Institute, Glasgow

NEURAL NETWORKS IN ARTIFICIAL
INTELLIGENCE
MATTHEW ZEIDENBERG, Department of Computer
Science, University of Wisconsin, Madison, USA
Very few 'general' books are presently available on neural
networks, being directed towards a particular viewpoint.
The purpose of this new title is to serve as a concise but
informative introduction to the best recent representative
research in the field, each topic demanding an overview of
work in one particular area and proceeding towards a
review of important work in that area.
The book is up-to-date, and presents only the mathema
tics which is essential to the understanding of neural net
work models. It provides the reader with an intuitive grasp
of the models rather than with a merely formal treatment,
and is a unique review of developments in the area, with
discussion of the mechanisms with which neural net
works are set up, and the algorithms by which they can
learn.

Readership: Neural network modelling, artificial intelligence,
cognitive engineering, knowledge engineering, expert systems,
parallel and distributed processing, psychology for computer
professionals, academic computer scientists, psychologists,
linguists.

NEURAL NETWORKS IN
ARTIFICIAL INTELLIGENCE

ELLIS HORWOOD SERIES IN ARTIFICIAL INTELLIGENCE
Joint Series Editors: Professor JOHN CAMPBELL, Department of Computer Science,
University College London, and
JEAN HAYES MICHIE, The Turing Institute, Glasgow

POP-11 COMES OF AGE: The Advancement of an Al Programming Language
CONTINUOUS HEURISTICS: The Prelinguistic Basis of Intelligence

KNOWLEDGE ENGINEERING
ADVANCES IN COMPUTER CHESS 6

MACHINE LEARNING: A General Framework and its Applications
DEDUCTION SYSTEMS IN Al

COMPUTER GAME PLAYING: Theory and Practice
IMPLEMENTATIONS OF PROLOG

PERSPECTIVES IN ARTIFICIAL INTELLIGENCE, Vols 1 & 2
IMPLEMENTATIONS OF PROLOG, Vol. 2*

INTERPRETING ANAPHORS IN NATURAL LANGUAGE TEXTS
FORMAL SPECIFICATION OF ADVANCED PROBLEM SOLVING ARCHITECTURES

INTELLIGENT INFORMATION SYSTEMS: Progress and Prospects
STRUCTURES OF DISCRETE EVENT SIMULATION

Al AND EXPERTISE
MACHINE LEARNING:

Applications in Expert Systems and Information Retrieval
Frixione, S.G., Gaglio, S., and Spinelli, G. REPRESENTING CONCEPTS IN SEMANTIC NETS

Anderson, J. (editor)
Andrew, A.M.
Attar, A.
Beal, D.F.
Bergadano, F., Giordana, A. & Saitta, L
Blasius, K.H. and Biirckert, H.-J.
Bramer, M.A. (editor)
Campbell, J.A. (editor)
Campbell, J.A. and Cuena, J. (editors)
Campbell, J. A. & Cox, P.
Carter, D.
Craig, I.D.
Davies, R. (editor)
Evans, J.B.
Farreny, H.
Forsyth, R. & Rada, R.

Futo, I. & Gergely, T.
Gabbay, D.M.
Gottinger, H.W. & Weimann, H.P.
Hawley, R. (editor)
Hayes, J.E. & Michie, D. (editors)
Levy, D.N.L. & Beal, D.F. (editors)

Lopez de Mantaras, R.
tukaszewicz, W.
McGraw, K. & Westphal, C

Mellish, C.
Michie, D.
Mortimer, H.
Mozetic, I.
Obermeier, K.K.
Partridge, D.

Ramsay, A. & Barrett, R.
Ras, Z.W. & Zemankova, M.
Saint-Dizier, P. & Szpakowicz, S. (editors)
Savory, S.E.
Shanahan, M. & Southwick, R.

Spacek, L.
Sparck Jones, K. & Wilks, Y. (editors)
Steels, L. & Campbell, J.A. (editors)
Smith, B. & Kelleher, G. (editors)
Torrance, S. (editor)
Turner, R.
Wallace, M.
Wertz, H.
Yazdani, M. (editor)
Yazdani, M. & Narayanan, A. (editors)
Zeidenberg, M.

ARTIFICIAL INTELLIGENCE IN SIMULATION
PROGRAMMING IN PURE LOGIC*

ARTIFICIAL INTELLIGENCE: A Tool for Industry and Management
ARTIFICIAL INTELLIGENCE PROGRAMMING ENVIRONMENTS

INTELLIGENT SYSTEMS: The Unprecedented Opportunity
HEURISTIC PROGRAMMING IN ARTIFICIAL INTELLIGENCE:

The First Computer Olympiad
The Second Computer Olympiad

APPROXIMATE REASONING MODELS
NON-MONOTONIC REASONING: Formalization of Commonsense Reasoning

READINGS IN KNOWLEDGE ACQUISITION:
Current Practices and Trends

COMPUTER INTERPRETATION OF NATURAL LANGUAGE DESCRIPTIONS
ON MACHINE INTELLIGENCE, Second Edition

THE LOGIC OF INDUCTION
MACHINE LEARNING OF QUALITATIVE MODELS*

NATURAL LANGUAGE PROCESSING TECHNOLOGIES IN ARTIFICIAL INTELLIGENCE
ARTIFICIAL INTELLIGENCE:

Applications in the Future of Software Engineering
Al IN PRACTICE: Examples in POP-11

INTELLIGENT SYSTEMS: State of the Art and Future Directions
LOGIC AND LOGIC GRAMMARS FOR LANGUAGE PROCESSING

ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS
SEARCH, INFERENCE AND DEPENDENCIES

IN ARTIFICIAL INTELLIGENCE
ADVANCED PROGRAMMING IN PROLOG

AUTOMATIC NATURAL LANGUAGE PARSING
PROGRESS IN ARTIFICIAL INTELLIGENCE

REASON MAINTENANCE SYSTEMS AND THEIR APPLICATIONS
THE MIND AND THE MACHINE

LOGICS FOR ARTIFICIAL INTELLIGENCE
COMMUNICATING WITH DATABASES IN NATURAL LANGUAGE
AUTOMATIC CORRECTION AND IMPROVEMENT OF PROGRAMS

NEW HORIZONS IN EDUCATIONAL COMPUTING
ARTIFICIAL INTELLIGENCE: Human Effects

NEURAL NETWORKS IN ARTIFICIAL INTELLIGENCE

In preparation

NEURAL
NETWORKS IN
ARTIFICIAL
INTELLIGENCE

MATTHEW ZEIDENBERG b.a.,m.s.

Computer Sciences Department
University of Wisconsin, Madison, USA

ELLIS HORWOOD
NEW YORK LONDON TORONTO SYDNEY TOKYO SINGAPORE

First published in 1990
and Reprinted in 1991 by
ELLIS HORWOOD LIMITED
Market Cross House, Cooper Street,
Chichester, West Sussex, P019 1EB, England
A division of
Simon & Schuster International Group
A Paramount Communications Company

© Ellis Horwood Limited, 1990

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission, in writing, of the
publisher

Printed and bound in Great Britain by Hartnolls, Bodmin

British Library Cataloguing in Publication Data

Zeidenberg, Matthew
Neural networks in artificial intelligence.—
(Ellis Horwood series in artificial intelligence)
1. Artificial intelligence
I. Title
0065.3
ISBN 0-13-612185-3

Library of Congress Cataloging-in-Publication Data

Zeidenberg, Matthew
Neural networks in artificial intelligence/ Matthew Zeidenberg
p. cm — (Ellis Horwood series in artificial intelligence)
ISBN 0-13-612185-3
1. Neural computers. 2. Artificial intelligence I. Title. II. Series
QA76.5.Z36 1989
006.3-dc20 89-24457

CIP

Table of Contents

Preface...11
Acknowledgments..13

Chapter 1
Issues in Neural Network Modeling..15

1.1. Introduction...15
1.2. The Statistical Nature of Connectionist Models... 17
1.3. Relevance of the Brain...................................... 19
1.4. Distributed vs. Local Connectionism.................. 20
1.5. Distributed Models: A Critique......................... 26
1.6. Connectionist Models and the Fuzzy

Propositional Approach.......................................27
1.7. Philosophical Issues..29
1.8. Smolensky's "Proper Treatment" of

Connectionism..29
1.9. Connectionism: A New Form of

Associationism?... 35

Chapter 2
Neural Network Methods for Learning and Relaxation............... 41

2.1. Introduction...41
2.2. Types of Model Neurons...................................46
2.3. Types of Activation Rules................................... 48
2.4. Early Learning Models.. 49
2.5. Hebbian and Associative Learning.....................51
2.6. Kohonen's Work on Associative Learning......... 54
2.7. Willshaw's Binary Associator..............................56
2.8. Hopfield's Non-linear Auto-associator................ 56

6 Table of contents

2.9. Modeling Neurons with Differential Equations... 60
2.10. Simulated Annealing in the Boltzmann

Machine.. 62
2.11. Learning Weights in the Boltzmann Machine.....64
2.12. Error Back-Propagation...................................... 67
2.13. Applications of Back-propagation....................... 70
2.14. Learning Family Relationships............................71
2.15. Competitive Learning...73
2.16. Competitive Learning using

Feed-forward Networks......................................73
2.17. Competitive Learning using

Adaptive Resonance Theory.................................78
2.18. Kohonen's Self-organizing Topological Maps.... 82
2.19. A Population Biology

Approach to Connectionism................................ 86
2.20. Genetic Algorithms.. 91
2.21. Reinforcement Algorithms...................................94
2.22. Temporal Difference Methods............................. 98
2.23. Problem-Solving Using Reinforcement and

Back-propagation... 102
2.24. Problem-Solving Networks..................................107
2.25. Extensions to Learning Algorithms..................... I l l
2.26. Escaping From Local Minima............................. 112
2.27. Creating Bottlenecks.. 113
2.28. Sequential Learning..115
2.29. Remembering Old Knowledge............................. 117
2.30. Sequential Processing...120
2.31. Image Compression Using a

Back-propagation Auto-associator..................... 122
2.32. Representing Recursive Structures...................... 123

Chapter 3
Production Systems and Expert Systems....................................127

3.1. Introduction..127
3.2. A Connectionist Production System...................128
3.3. Saito and Nakano's Connectionist Expert

System.. 13 1
3.4. Gallant's Connectionist Expert System...............134

Chapter 4
Knowledge Representation..138

4.1. Introduction... 138
4.2. Storing Schemata in Neural Networks................ 139

Table of contents 7

4.3. Storing Frames in Neural Networks....................140
4.4. Storing Schemata with a

Complex Neural Architecture............................144
4.5. Learning Microfeatures for

Knowledge Representation...................................148
4.6. Implementing Evidential Reasoning

and Inheritance Hierarchies................................. 151

Chapter 5
Speech Recognition and Synthesis... 157

5.1. Introduction... 157
5.2. Comparing Algorithms for Speech

Recognition.. 158
5.3. Speech Recognition as Sequence Comparison.....160
5.4. Tlie Temporal Flow Model................................. 163
5.5. The TRACE model..165
5.6. A Model of the Print-to-speech

Transformation Process....................................... 168
5.7. NETtalk: Reading Aloud with

a Three-Layer Perceptron..................................172

Chapter 6
Visual Perception and Pattern Recognition.................................. 177

6.1. Introduction... 177
6.2. Interpreting Origami Figures..............................178
6.3. Recognition Cones..183
6.4. Separating Figure from Ground......................... 185
6.5. Determining "What" and "Where"

in a Visual Scene.. 188
6.6. Linking Visual and Verbal Semantics................. 192
6.7. Recognizing Image-schemas................................ 193

Chapter 7
Language Understanding...195

7.1. Introduction... 195
7.2. Processing Finite State Grammars

Sequentially.. 200
7.3. Sentence Interpretation.. 205
7.4. Word Sense Disambiguation................................ 210
7.5. Making Case Role Assignments......................... 212
7.6. The MPNP Parsing System................................. 215
7.7. Parsing Strings from Context-Free Grammars...218

8 Table of contents

7.8. PARSNIP: A Parsing System
Based on Back-propagation..................................221

7.9. A Quasi-Context-Free Parsing System................ 223
7.10. Parsing Using a Boltzmann Machine...................225
7.11. Learning the Past Tense....................................... 227
7.12. A Critique of "Learning the Past Tense"............230
7.13. Letter and Word Recognition.............................. 232

Postscript...236

B ibliography.. 239

Index 259

For my grandmother, Mrs. Toby Schwartz,
my parents, Rayna and Phillip,
and my sisters, Deborah and Lisa Beth

Preface

The purpose of this book is to serve as a relatively brief
introduction to the field of neural networks and their uses in
cognitive simulation. There is tremendous interest in this field, but,
at this writing, there is no book that attempts to overview the field in
a balanced and rigorous fashion. There has been an enormous
amount of research done in this area in the past several years. I try
to present some of the best and most representative research in the
field; since the amount of research that has been done is so large, I
have been unable to cover all of it. I have also provided a
bibliography, which is referenced throughout. Each chapter begins
with an overview of the work in a particular area (for example,
natural language processing) and proceeds to a review of important
and/or representative work in that area.

Chapter 1 overviews the field of neural networks, reviews
some of their history, and discusses some of the basic conceptual and
philosophical issues involved. Chapter 2 gets into the mathematical
specifics of the various network models.

Chapters 1 and 2 are prerequisites for the remaining chapters
in the book, which are each devoted to a particular area of artificial
intelligence(AI). Chapter 3 is devoted to the area of production and
expert systems. Chapter 4 is concerned with knowledge
representation. Speech recognition and synthesis is the topic of
Chapter 5. Chapter 6 concerns visual perception and pattern
recognition. Chapter 7 covers language understanding. As may be
observed by even a cursory examination of Chapters 2-7, there are
few problems in Al that have not been explored using the
connectionist paradigm. Any one of Chapters 2-7 can be read

12 Preface

independently, although there are relationships between chapters,
particularly between Chapters 4 and 7, since knowledge
representation is necessary for language understanding, and between
Chapters 5 & 6, which both deal with problems—vision and
speech—in the domain of perception.

Acknowledgments

I would like to thank Sue Horwood for suggesting that I write
this book, Sarah Teague, Allan Whittle, Mike Shardlow, Rosemary
Harris, and Jane Willett of the Ellis Horwood staff for helping see it
through to its completion, and Anne Coleman for competent typing
assistance. This book would not have been possible without the work
of the many researchers whose work it discusses; their example is
inspirational for those of us who hope to make a career of research,
and I am grateful to them. I would also like to thank Gregg Oden,
Leonard Uhr, and Vasant Honavar for advice, discussions, and
suggestions, M & M for California computing, and my family—my
parents, Rayna and Phillip, my sisters Debbie and Lisa, and my
grandmother Toby—and friends—especially Sandy, Ken, Duncan,
and Igor—for moral support.

Madison, Wisconsin, 1989 Matt Zeidenberg

1

Issues in Neural Network
Modeling

1.1. Introduction
The past five years or so have seen a substantial amount of

work being done in the area of neural network modeling. This
research attempts to build model neural networks that solve
significant psychological problems, such as natural language
understanding, visual processing, etc.

A neural network is a computational model that is a directed
graph composed of nodes (sometimes referred to as units or
neurons) and connections between the nodes. With each node is
associated a number, referred to as the node’s activation. Similarly,
with each connection in the network, a number is also associated,
called its weight. These are (very roughly) based on the firing rate
of a biological neuron and the strength of a synapse (connection
between two neurons) in the brain. There are usually some special
nodes with their activations externally set, called the input nodes;
there may be, in addition, some nodes that are distinguished as output
nodes.

Each node's activation is based on the activations of the nodes
that have connections directed at it, and the weights on those
connections. A rule that updates the activations is typically called the
update rule. Typically, all the activations would be updated
simultaneously. Thus a neural network is a parallel model. Because
of the lack of general availability of parallel computers, neural
networks are typically simulated on conventional serial computers.

Learning in a neural network typically occurs by adjustment
of the weights, via a learning rule. The network is typically trained
to either complete an input pattern, classify an input pattern, or

16 Issues in Neural Network Modeling

compute a function of its input. At the beginning of learning, with
the weights all "wrong", the network performs badly at one of these
tasks: at the end, with the weights adjusted, one hopes that it will
perform well. Typically the update or learning rules do not change,
only the weights. After learning, the weights are usually not
changed further, unless something new must be learned.

Many network connection schemes, update rules, and learning
rules have been invented: these are covered in gory detail in Chapter
2.

Neural network models, like Al itself, date back to the 1950s.
At the beginning of the 1980s, many researchers, discouraged at the
speed of progress in traditional, symbolic Al, turned back to neural
network models. They felt that this line of research had been unjustly
hurt by the publication, in 1969, of Minsky and Papert’s book
Perceptrons, which pointed up the limitations of a particular kind of
neural model, the two-layer perceptron. In 1985, a special issue of
Cognitive Science was devoted to the subject of "connectionism",
which was a new name for the field of neural network modeling, and
which emphasized the idea that it was the topology of the connections
in a network that was critical to its behavior. In this book, I will use
"neural network model", "connectionist model", and "connectionist
network" interchangeably.

Another reason for the renewed popularity of connectionist
models was the fact that parallel computers began to become
available. Connectionist models are one important variety of parallel
computational models.

In 1986, a two-volume set of books called Parallel Distributed
Processing: Explorations in the Microstructure of Cognition was
published which reported research done by a group of cognitive
scientists at the University of California at San Diego, and led by
David Rumelhart and Jay McClelland (1986b). The most important
result in those volumes—although they contained many important
ideas—was the report of the discovery of the error back-propagation
algorithm for learning the weights in an associative network (see
Chapter 2). Much of the connectionist literature since then has
comprised studies of what can be done with networks that are trained
using this algorithm.

Rumelhart, McClelland, and co-workers advocated a particular
type of network model, a distributed model, in which a typical
concept— such as a word— would be represented by a pattern of
activation across a set of nodes. This is in contrast with local

Neural Networks in Artificial Intelligence 17

representation, in which a particular concept is represented by the
activation of a single node. We discuss the relative advantages of
local versus distributed representations in section 1.4.

1.2. The Statistical Nature of Connectionist Models
A critical fact about neural networks is that they are

statistical associative models. A typical network model has a set
of input patterns and a set of output patterns. The role of the
network is to perform a function that associates each input pattern
with an output pattern. A learning algorithm, such as back-
propagation, uses the statistical properties of a set of input/output
pairs— called the training set— to generalize, that is, generate
outputs from novel inputs. Without the ability to generalize, neural
network models would be like look-up tables, which are not very
interesting. For a formal discussion of generalization in learning, see
Valiant (1984).

It is important to recognize the difference between statistical
and rule-based inference. Statistical inference allows for exceptions
and randomness in the association between two variables, whereas
rules are deterministic. In a neural network model, the history of the
system—that is, what training it has seen—determines the system's
response to a new stimulus. Often, rule-based systems are non-
adaptive, that is, they do not respond to observed changes in the
stimulus environment, although they can be made to be adaptive.
Rule-based systems can be made to handle exceptions as well, at the
expense of making the rules more complex.

Thus neural networks derive their inspiration from two
distinct yet related fields—associationist psychology and
neuroscience. Associationist psychology has a long history:
behaviorism is one form of it, but the idea that human memory
works associatively dates back at least to classical times.
Neuroscience and associationist psychology have an uneasy alliance
that comes from the simple observation that neurons synapse with
one another, therefore the firing rates of such neurons are
associated. If the brain is simply a web of such associations, perhaps
the mind is as well.

As Touretzky (1988) points out, usually a connectionist
system either classifies the input or performs some function of it. In
either case the function computed tends to be a continuous one, with
relatively similar outputs being assigned to similar inputs. There

18 Issues in Neural Network Modeling

may be a certain number of discontinuities intrinsic to a
classification task, since the outputs in such a task are a discrete set
of symbols representing the sets in which the inputs are classified.

Some type of measurement of similarity between patterns is
critical for a statistical process such as a neural network. In
computing its output for a given input, a connectionist model
computes some sort of correlation between its input and the set of
stored weights associated with a given node in the layer above the
input. Typically this correlation is a dot (scalar) product; if xi and
wi are the ith components of the input and weight vectors
respectively, then the dot product is given by

X wix i
i

Yet there are many methods of forming statistical correlations
between patterns. A review may be found in Kohonen (1988); a
summary of that review follows:

Probably the best known measure of the distance between two
vectors x and y is the Euclidean distance, given by

J Z (Xi-y0 2
i

This generalizes to the Minkowski metric, given by

(I (x i - y i) n) 1/n
i

which, when n=l, is sometimes referred to as the "Manhattan"
distance (because in order to get between two points in Manhattan
(New York City) one must move along a grid). When n=2, it is the
Euclidean distance.

If what matters is not the magnitude of the vectors that are
being compared, but their relative orientation 0, this is given by

X * V
COS j-j r\x\\y\

cosO=l implies x and y are parallel (and thus as similar as possible);
cos6=0 implies x and y are orthogonal.

Neural Networks in Artificial Intelligence 19

In fuzzy logic (Zadeh 1973), in one version presented by
Kohonen, two scalars' similarity is given by

e(x,y) = max(min(x,y),min(1 -x,l -y))

where x and y are drawn from the interval between 0 and 1
inclusive, x and y are variables that represent the degree of truth of
two propositions, and e represents the degree to which they are
equivalent. These differences, when they are taken between vector
components, can be combined using the Minkowski metric above
with some value of n (most typically n-1 or 2). Kohonen points out
that this method is simpler to compute than a dot product, since the
maximum and minimum functions are simpler to compute than the
product function, and that, in forming the distance, this method
counts weak signal data more than the dot product does.

All of the similarity measures mentioned so far deal with real
valued input vectors. For discrete-valued vectors, one similarity
metric is the Hamming distance. This is simply the number of
vector components in which two vectors x and y differ. Each
element of each vector being compared is drawn from a finite set of
symbols. In the case of binary vectors, the Hamming distance is
given by the sum of the exclusive-or function (xor) across all
components:

X xor(xi,yi)
i

Although most of the computations carried out in
connectionist models involve the dot product of weights with input
(often then composed with a functional, such as a sigmoid function),
it is helpful to keep in mind that this is only one of the many
similarity functions that could be used.

1.3. Relevance of the Brain
Research in neural networks stems from the idea that

simulating, on a computer, the way that the brain processes
information may prove useful in understanding thought processes.
Neural network research dates from the 1940s. In 1943, McCulloch
and Pitts published their classic paper "A Logical Calculus of the
Ideas Immanent in Nervous Activity" (1943). McCulloch and Pitts's
neurons were simple logic gates, the and, or, and not gates familiar

20 Issues in Neural Network Modeling

to logic designers. McCulloch and Pitts proved that a computer built
out of these "formal neurons" was Turing-equivalent, that is,
equivalent to the most powerful class of computing devices known
(Turing machines).

As Cowan and Sharp (1988) and many others (for example,
see Shepherd 1989) have pointed out, actual neurons are much more
complex than simple logic gates, and "their complexities can be
accurately simulated only by intricate computer chips". These
complexities have been elucidated only in recent years, since
McCulloch and Pitts's work. Most neuron models that have been
developed for neural network research are less complex than actual
neurons. Neural network researchers argue that since their models
are Turing-equivalent, they can simulate any computation at all, so
there is no need to use more complex neuron models.

The brain consists of approximately 10H -10l2 neurons
connected in a complex fashion. Neural network and brain
researchers believe that the way that the neurons are connected to
one another is critical to understanding the behavior of the brain as
an information-processing system.

1.4. Distributed vs. Local Connectionism
The brain, like the rest of the body, is built of unreliable

components. Neurons can wither and die. How is it possible that the
brain continues to function fairly reliably over a long period,
despite this? This was a question that interested John von Neumann,
a mathematician who was one of the founders of computer science
(Von Neumann 1956). He devised a neural network that utilized
redundant neurons, using a "voting" protocol. In such a net, a set of
neurons "vote" on whether or not another neuron should fire. If a
majority of the inputting neurons fire, i.e. vote "yes", then the
outputting neuron will fire (and possibly input into some other
neurons). Thus if an outputting neuron starts out with a strong
majority, the failure of some of the neurons inputting to it to fire
will not affect its outputting, and thus performance will not be
degraded. Redundancy has been the cornerstone of much work in
reliable systems. Randell and his co-workers (1978) review work in
this area.

Much of the debate among connectionists concerns the degree
to which information should be localized in a single neuron (Barlow
1972), or distributed across many neurons. A distributed memory is

Neural Networks in Artificial Intelligence 21

the latter kind, one in which a symbol—for example, an ordinary
word—is represented by a pattern of activation.

While studies of brain function have proved that different
activities—for example, speech, vision, or motor control—are
localized in various specialized parts of the brain, many people
believe that single neurons do not represent high-level pieces of
information. The argument goes as follows: if one had a neuron that
represented, for example, one's grandmother, then there would be
people running around who were perfectly normal except for their
inability to recognize their grandmother (i.e. whose grandmother
neurons had died). Since there are no such people (as far as we
know), therefore there cannot be any grandmother neurons (or
yellow Volkswagen neurons, etc.), or there must be many redundant
copies of a grandmother neuron. Human memory appears to suffer
from "uniform degradation"; instead of individual memories
becoming lost, performance on recall of all memories becomes
worse and worse (with age or injury).

Local representations are also subject to a combinatorial
explosion, in which a node is needed for every concept. This is
because there are an infinite number of concepts, because of the
natural combinatorial nature of language, and each one would
require an individual node. For example, in a local representation,
one would have to have a "tall blond man" node, whereas in a
distributed representation one would have nodes for "tall", "blond",
and "man", all of which would be activated simultaneously to
represent "tall blond man". These individual nodes are often
referred to as microfeatures to emphasize the fact that individual
concepts can be decomposed into them. Microfeatures are often
chosen on the basis of a researcher's feeling that the chosen concepts
are somehow basic to a complete semantics of the concepts being
represented, but very few researchers have chosen their
microfeatures in a principled way. For limits on how this might be
done, see works on semantics such as those by Barwise & Perry
(1983) and Jackendoff (1983).

One of the more active research centers, the University of
Rochester, emphasizes the use of local representations in
connectionist models (Feldman 1986). Feldman, Ballard, and their
colleagues and students at Rochester have applied these types of
models to problems in knowledge representation, vision, and
language comprehension. For examples, see the reviews of the
work of Shastri in Chapter 4, Sabbah in Chapter 6, and Fanty in

22 Issues in Neural Network Modeling

Chapter 7. The main advantage of local representations is they are
relatively easy to understand and implement. The main disadvantage
is the combinatorial explosion in the needed number of nodes.

In distributed representations, information is represented
redundantly, but a single neuron may participate in the
representation of several pieces of information. This idea is not new
in psychology: for instance, Pribram (1971) proposed a
"holographic" theory of memory, in which every memory was
stored as a hologram. A small piece of a hologram may be used to
reconstruct the entire image (at lower resolution), thus, the
hologram contains redundancy. In the connectionist formulation, a
distributed memory is typically viewed as a pattern of activation
over a set of interconnected nodes in a neural network.

The relationship between local and distributed representations
is analogous to that between unary and higher radix number
systems. In a unary system, the number of symbols needed to
represent a set of n numbers is proportional to n, whereas in a
binary or higher radix system it is proportional to logyn, where r is
the radix. The radix of the system is, in a distributed model,
equivalent to the number of states a given node can have. Normally
there are two, activated or deactivated, although nodes may have
anywhere from two to an infinite number of states.

One problem with a distributed memory is crosstalk. Consider
three nodes A,B, and C, and three concepts 1,2, and 3. If concept 1
is represented by AB (i.e., nodes A and B activated), concept 2 by
BC, and concept 3 by AC, then if any two of the concepts are
activated, the third one will be as well, even if it is not there. This is
crosstalk; the concept erroneously evoked is called a ghost.

One particular technique for constructing a distributed
memory is known as coarse-coding. Coarse-coding is best
understood as a way to represent a digitized image. Suppose there
are two layers of neuron units, each of which is a two-dimensional
array, so that the input layer represents an ordinary digitized image
array, stored in the activations in the units. Suppose one output unit
is associated with each of a square array of units in the input, say a
3x3 or a 4x4 array, then it responds when any of the units in that
small array are active. The array of units that the output unit
responds to is called its receptive field. Typically, in a coarse-coded
memory, output units have overlapping receptive fields.

Figure 1.1 shows a coarse-coded memory with 16 input units
(shown as white circles), 9 output units (shown as grey circles), and

Neural Networks in Artificial Intelligence 23

receptive fields of 4 units per output unit. The receptive fields
overlap so that the left two units of one output unit's field compose
the right two units of the receptive field of the output unit to the
right of it, and similarly for the output units above and below each
other. Coarse coding is a distributed memory technique because a
single unit's activation in the input units corresponds to a pattern of
activation in the output units. For instance, if unit (2,2) of the local
input pattern is activated, then units (1,1), (1,2), (2,1), and (2,2) of
the coarse-coded output units would be activated.

Coarse-coding is a useful method
of reducing the number of units that is
required to represent some stimulus.
However, since a coarse-coded image
reduces resolution, local detail is often
lost. Distributed models in general
require less units than local models; the
more distributed the model, the fewer
units.

Rosenfeld and Touretzky (1988)
review techniques for coarse-coded or Figure 1.1. A Coarse-coded
distributed memory representation. They Symbol Memory,
use the phrases coarse-coded memory and
distributed memory interchangeably. They define a coarse-coded
symbol memory (CCSM) as: (1) a set of N units with binary-valued
activations, (2) a set of a symbols and (3) a mapping of each of the
symbols onto a bit pattern in the units. That is, a symbol is—as in
most definitions of distributed memory—represented by a pattern of
activation across a set of binary units. Each unit has a receptive field
consisting of all the symbols in each unit for which it is activated. A
ghost is a pattern in the memory that corresponds to a symbol that
was not intended to be stored; it is the result of crosstalk. The
failure rate of a CCSM is the rate at which ghosts emerge.

They define Pghost as the probability that a ghost will
emerge, given that the CCSM has stored a certain number of items
k. They note that a local representation is one in which k=N=a and
Pghost=0 , that is, one in which each symbol has one unit assigned to
it. Aside from the terminology, there is no difference between a
CCSM and a binary function on a finite set of symbols.

One CCSM that they explore is the random receptors model,
in which each unit is assigned to each symbol with a probability s.
They show that the probability of a ghost is minimized when

24 Issues in Neural Network Modeling

s= l/(k+ l), where k is the number of items stored. They also show
that, for this model, this implies that the number of symbols a in the
alphabet can be related to Pghost* the number of units N, and the
number of symbols stored k (if k is large) by a function

a (N ,k ,P g h o s t) = P g h o s t eO-3 6 8 (W k)

They note that this implies that capacity (k) can be increased
linearly by linearly increasing the number of units (N), because of
the term N/k in the above formula. It also shows that the probability
of representing a ghost symbol can be reduced by reducing the
number of symbols to be represented, or increasing the number of
units, which makes intuitive sense.

Rosenfeld and Touretzky go on to analyze the effects of
dividing up a CCSM into two or more CCSMs. They conclude that,
unless you have some information about which pairs of symbols will
be stored at once, it does not pay to split the system.

They compare the coarse coding scheme used by Touretzky
and Hinton in DUCS (see section 3.2 for a complete description)
with the random receptors method. The DUCS memory uses
randomness, but in a more structured way than purely random
receptors. They note that the random receptors method gives a
lower probability of getting a ghost for a given number of system
units and patterns stored, but the DUCS system typically only needs
slightly more units to achieve the same result. They conclude that
DUCS needs more units than a random receptor model since there is
more redundancy in representing a given symbol. In the random
receptor model, the number of units in a receptive field of a unit is
dependent on the number of symbols that are stored, in DUCS it is
fixed. This leads to sub-optimal performance.

They consider another distributed representation, the
wickelphone representation used by Rumelhart and McClelland
(1986a) (see section 7.12) in their model of the learning of the past
tense forms of English verbs, in which the phonemes of words are
represented by the phoneme name and its left and right context
phonemes (since a sound is different depending on its context). The
name and context phonemes are each represented by a microfeature
vector of 11 bits representing various phonetic features, such as
voicing, place of articulation, etc. A wickelphone therefore requires
33 bits of information to describe it. They represent the

Neural Networks in Artificial Intelligence 25

wickelphones as wickelfeatures, in which one wickelfeature node
represents a conjunction of three phonemes. A single wickelfeature
node always is compatible with several or many actual
wickelphones; for instance, it could be compatible with t,d, and k.
Their main point in reviewing the wickelphone representation in the
context of coarse coding is to illustrate that microfeature-based
distributed representations and coarse-coding are not necessarily
incompatible, but can complement one another.

Designing a distributed memory is equivalent to assigning
receptive fields to the units in the system. They note that a stochastic
method for generating receptive fields can cause unacceptable
variation in the size of the fields, and affect the performance of the
system. They have developed a method for generating optimal fixed
sized receptive fields, the bounded overlap method, but this requires
an exponential search, which is too expensive in the typical case of a
few thousand units (Rosenfeld and Touretzky 1988).

They suggest a practical method for designing a distributed
memory whereby each unit in the CCSM has its receptive field set to
a consecutive set of F symbols, chosen cyclically and repeatedly,
from the symbols in the symbol set in some order. The receptive
fields are then shuffled randomly for some time, by exchanging a
symbol between the receptive fields of units x and y that is in the
receptive field of y but not x for one that is in the receptive field of
x but not y. They note that the pattern size (the size of a pattern
representing a symbol) is L=NF/a, where a is the number of
symbols, and the expected overlap Oe between two patterns

Oe = L(F-l)/(a-l)

We want to minimize the degree to which the overlap C(i,j)
between the patterns for the ith and jth symbols differs from the
expected overlap, as measured by the variance

V = j Z [(C (i J) - 0 E]
i*i

After shuffling the receptive fields, they are shuffled some more,
but each shuffling step is taken only if it reduces the variance. The
algorithm stops when the variance is reduced to an acceptable level.

26 Issues in Neural Network Modeling

1.5. Distributed Models: A Critique
Oden (1988b) gives a useful discussion of distributed models.

One of his main points is that a model that looks distributed is
always local from another point of view. For instance, in the model
of schemata presented by Rumelhart et al. (1986f), a bedroom is
represented by a series of nodes representing the objects in it. The
model is distributed with respect to the bedroom, but local with
respect to the objects in it. Similarly, in the case of coarse-coding,
when a stimulus is encoded in terms of the responses of detectors
that have overlapping areas of sensitivity, the array of responses is
distributed with respect to the stimuli, but is local with respect to the
detectors.

Oden points out that distributivity is not a characteristic
predominantly of connectionist models; even the ordinary binary
encoding of a number is distributed, since each bit can participate in
the representation of many numbers. Distributivity, according to
Oden, is a question of degree and perspective.

Oden tackles the common claim of connectionists that the
nodes in a network can be non-symbolic, that is, that they can have
no semantic interpretation, especially in a distributed network. This
claim is a resulting of misconstruing a complex, hard-to-make
interpretation as no interpretation. Oden gives the rotation of a
coordinate system as an example. A pair of coordinates that could be
readily interpreted in terms of one system could not be as readily
interpreted in terms of another, rotated, system. Yet all the original
information is preserved.

To give another example: if I take a digitized picture of Lenin
and run it through some invertible transformation so that the picture
becomes unrecognizable, does this make the result non-symbolic of
Lenin? I think not: all the information necessary to construct the
picture of Lenin is still there (since the transformation is invertible).

The third property of connectionist models that Oden
discusses is their continuousness. He notes that all models must deal
with continuous data, since the real world is continuous, but models
differ in the degree to which they transform these data to continuous
or binary variables. Some connectionist models have neurons that
fire "on" when their input exceeds a threshold, and "off’ otherwise.
These are discrete models; the non-linear sigmoid response curve
and the linear response curve of other connectionist models are
continuous models (see section 2.3). Oden notes that connectionist

Neural Networks in Artificial Intelligence 27

models provide for "the use of best-fit pattern matching, which in
turn allows for the kinds of categorization, content-addressability,
and automatic generalization that (they) are known for." Traditional
cognitive models make discrete classifications based on necessary
criteria or cutoffs; they do not allow for there to be degrees of fit to
a set of possible concepts, as there is in a connectionist model, where
a concept node may be more or less activated, or in fuzzy set theory,
in which an element may have a degree of membership in a set that
is any value intermediate between 0 and 1. An example of how a
connectionist model may closely correspond to a particular
symbolic, cognitive approach—the fuzzy propositional approach—is
given in the following section.

1.6. Connectionist Models and
the Fuzzy Propositional Approach
Oden (1988a) has worked out a relationship between his

earlier work in symbolic cognitive science, in what he termed the
fuzzy propositional approach, and connectionist models. In the fuzzy
propositional model, each proposition A is assigned a truth value
t(A) between 0 and 1. One form of this model uses a multiplicative
law for conjunction: t(A and B)=t(A)*t(B).

The following rule is usedfor disjunction: t(A or
B)=(l-t(A))*(l-t(B)) The result of amplifying a truth value t(very
A,) is given by t(A)v, where v is some constant. These formulas are
borrowed from probability theory, although it is different to say
that A is partly true than it is to say that A is has a certain
probability of being true.

Starting with some
experiments that Oden
and Rueckl (1986) did on
stim uli that vary
Continuously on two Figure 1.2. Stimuli similar to those used in
dimensions, Oden derives experiments. Reprinted by permission,
some response formulas.
The exact stimuli were "eat" and "lot" (see Figure 1.2)— the
difference between them is based on a continuous variation of the
height of the loop in the "e" or the "1" (in their hand-written
versions) and the depth of the dip in the line that connects the "a" or
the "o" with the "t". If t is the truth value of the first letter being "1"

28 Issues in Neural Network Modeling

and d is the truth value of the second letter being "a”, this gives the
formula

t("eat" rehtlve-to "lot") = (t(eJt)J(bt)) = (l-t)dJt(l-d)

It there is a possibility of, for instance, the loop in the "1" being very
tall, or any of the other features being amplified in this way, we
have

(l-t)wldw2
t("eat" relative-to "lot")=---------- -— ------- : ------------

(l-t)wldw2+tw3(l-d)w4

Oden notes that the typical semi-linear, sigmoid response
function of a neuron (see section 2.3) can be approximated by
f(x)= l/(l +e~x), where is the input to the neuron and / is the output.
To map his scheme on to a connectionist network, he postulates that
there are nodes whose activation corresponds to "short", "tall",
"deep", and "flat", where the first two of these refer to the loop of
the e/1, and the second two correspond to the dip between the a/o and
the t. Thus, "short" and "deep" would be positively connected to the
"eat" node, and "tall" and "fat" would be negatively connected to the
"eat" node. The "lot" node would have opposite connections.
Numerically,

aeat=f(wias+w2ad-w3arw4af)

where as is the activation of the "short" node, etc. Plugging this into
the formula for the semi-linear response function, we get

a = ___________ 1____________ (eas)wl(ead)w2
601 l+e-(wias+w2 ac[-w3 ar w4 af) (e^s)wl(ead)w2+(e< t̂)w3(e^f)w4

Beyond the fact that the activations are exponentiated, this is
identical to the version given by the fuzzy propositional model.
Under other conditions, however, Oden notes that the isomorphism
between the two models does not hold. In any case, the two models
are close.

Oden makes the case that a symbolic system, such as the fuzzy
propositional model, can be used to understand connectionist

Neural Networks in Artificial Intelligence 29

systems, which otherwise would be collections of nodes that operate
as if by magic. He argues that the symbolic and the neuronal levels
are complementary, not in conflict. It is not sufficient to design a
system that learns a task by adjustment of weights; one must be able
to give a semantic interpretation of the system.

1.7. Philosophical Issues
Connectionism has stimulated vigorous discussion of its

usefulness as a research strategy for cognitive science. To its
detractors, it is a new form of associationism, and the debate on its
merits simply a rehash of the late 1950s debate between behaviorists
and cognitivists, which the cognitivists basically won, in that
cognitivism became the prevailing school of thought. Of course,
connectionism is explicitly representational, while behaviorism was
anti-representational.

The best known philosophical arguments for connectionism,
and against it, are, respectively, those of Smolensky (1988), and
Fodor and Pylyshyn (1988). Smolensky was a contributor to the
PDP books (Rumelhart et al. 1986b). Fodor and Pylyshyn are well
known proponents of the symbol-manipulation approach to AI; for a
sample of the earlier philosophical work, see Pylyshyn (1984) and
Fodor (1981). The book edited by Graubard (1988) contains several
articles concerned with the philosophical controversy around
connectionism.

1.8. Smolensky's "Proper Treatment" of Connectionism
Smolensky (1988), in his controversial article "On the Proper

Treatment of Connectionism" attempts to characterize the limitations
and advantages of the connectionist approach, and to reconcile it to
the traditional approach to AI. He characterizes connectionism as
the "sub-symbolic" approach, as opposed to traditional AI as
embodied in the Physical Symbol System Hypothesis (PSSH) of
Newell (1980). He interprets the PSSH as stating that the "sub
symbols" in the connectionist paradigm are constituents of the
symbols used by traditional AI. The two paradigms also have
different levels on which they operate; the symbolic approach uses
what Smolensky calls the conceptual level, and the connectionist
approach uses what is called the sub-conceptual level.

Smolensky says that natural language has provided the major
theoretical focus of the symbolic paradigm. Cultural knowledge

30 Issues in Neural Network Modeling

about specific domains is typically embodied in language, and
linguistic symbol lists, in the form of rules, are used in conjunction
with some type of logic to create simulations of human action. The
machine acts as a rule interpreter, which is a model of conscious
rule application. In addition to this rule interpreter, Smolensky
posits the existence of a second, unconscious processor, which acts
on knowledge drawn from individual experience to perform tasks
such as intuitive expert game playing, motor coordination, that is,
almost all skilled action. He calls this processor the intuitive
processor.

He considers the following possible assertions, all of which he
will reject: that the intuitive processor deals with "linguistically
formalized rules" which are applied sequentially, that the program
of the intuitive processor is itself symbolic, and that these programs
are similar to those of the conscious rule interpreter. He rejects
these assertions, as most connectionists do, because—as yet—models
of human performance that are based on them lead to too much
brittleness and inflexibility, because the amounts of knowledge that
would have to be embodied to make them workable is too large, and
because they lead to few insights about how the brain works.
(Fodor and Pylyshyn argue that there is no particular reason why
they should lead to such insights; see the next section.)

After rejecting a symbolic approach to the intuitive processor
Smolensky considers the opposite extreme; that the intuitive
processor uses the same architecture as the brain does. The trouble
with this hypothesis is that we don't know what the brain's
architecture is. Instead of this hypothesis, Smolensky advances the
hypothesis that the intuitive processor has a connectionist
architecture. The version of connectionism that Smolensky
advocates is what he calls the "connectionist dynamical system
hypothesis". This hypothesis views a connectionist system as a
parallel computer containing many processors, with each of which is
associated a number (or possibly, a set of numbers). Thus the state
of the system can be described by a vector, a state vector of
activations. The system has an equation describing how the state
vector evolves in time, which Smolensky calls the activation
evolution equation. The state of the connections in the system (that
is, the weights on them), can also be described by an equation, which
Smolensky calls the connection evolution equation. Thus a
connectionist system is, for Smolensky, a dynamical system such as

Neural Networks in Artificial Intelligence 31

that found in physics. Typically these are governed by differential
equations.

Next, Smolensky considers the meaning of the activations in a
connectionist system. Each of the activations does not constitute an
entire symbol; rather a symbol (e.g., word) is represented as a
distributed pattern of activation across the system, each unit is sub-
symbolic and participates in the pattern for many symbols. He takes
this to a (possibly new) extreme, by hypothesizing that the sub-
symbolic behavior of a connectionist system is not explicable in
terms of the conceptual level. This rejects the idea (see Fodor and
Pylyshyn, next section) that connectionist models are
implementations of symbolic processes. Smolensky believes that if
connectionist modeling is an implementation theory, the
connectionist research program is defeated. The mere fact that
connectionist networks and Von Neumann machines (conventional
serial computers) can simulate one another does not reduce
connectionism to an implementation theory, because a Von Neumann
simulation of a connectionist machine does not manipulate the kinds
of linguistic-level symbols used in a typical rule-based system.

Smolensky reviews three methodologies for choosing features
at the sub-conceptual level. This first is the borrowing of these
features from previous symbolic models, such as was done in
Rumelhart and McClelland's (1986a) model of the formation of the
past tense, where phonetic features were used (see section 7.12) The
second is the learning of the relevant features in hidden units using
learning procedures such as back-propagation. The third method is
to choose features in such a way so as to tune a system so that it
matches human performance.

One technique that does this, according to Smolensky, is
multi-dimensional scaling (Shepard 1962), which looks at the raw
corpus of data and extracts vectors which can be used to represent
the stimuli. Smolensky points out that, if we want to look to the,
brain for guidelines on how to derive features at the sub-conceptual
level, we lack information. We have more information in vision
than in any other domain—in a domain such as language processing
the information given is virtually nil. Thus Smolensky points out
(the protestations of some other connectionists to the contrary), that
the semantics of the features at the sub-conceptual level are, at this
point, more closely related to the semantics of concepts at the
conceptual level than they are to the activations of neurons in the
brain. Moreover, the actual activity of the brain is much more

32 Issues in Neural Network Modeling

complex than is reflected in most current connectionist models. Yet,
clearly, because of the rough correspondence between connectionist
models' architecture and the brain, connectionist models are likely
to operate under similar principles to the brain.

Smolensky concludes that connectionist models are at a level
intermediate between that of symbolic models and the brain, and
should not be seen as biological models themselves. He argues that a
reduction will someday have to be made from successful
connectionist models to neural circuits. The expression of neural
circuits directly in models is made difficult by insufficient
knowledge of the dynamic behavior of the brain, according to
Smolensky. The degree to which a connectionist model can be
approximated by a symbolic model depends on whether or not the
process being modeled is one of conscious rule application or of
intuition. Conscious rule application processes modeled on the
connectionist level can be described "with reasonable precision" on
the conceptual level, but intuitive processes can be described only
roughly on the conceptual level. This is because the symbolic level
relies strongly on its own implementation language for its
functioning.

On the other hand, connectionist models can serve as an
implementation language for conventional symbolic processes.
However, the details of how this is done are not completely
specified, although Touretzky and Hinton (1985) (see also Touretzky
1987) have done valuable work in this area. Smolensky divides
knowledge that is useful in interpreting stimuli into two sets: P-
knowledge (parallel knowledge) and S-knowledge (sequential
knowledge). P-knowledge can be used in parallel; e.g., a listener
attempting to understand a sentence can simultaneously use syntactic,
phonetic, morphological and semantic knowledge. On the other
hand, S-knowledge cannot be used in parallel; a player of a game has
to execute a single rule before s/he can contemplate the execution of
a second rule. According to Smolensky, P-knowledge is much more
context dependent than S-knowledge, because it is necessary to know
which aspects of the P-knowledge can operate in conjunction with
one another.

Next, Smolensky attempts to characterize what it is about a
model that makes it cognitive, and how connectionist models can be
cognitive. He defines a cognitive system as one that maintains a
large set of goal conditions under a variety of environmental
conditions. A thermostat is not cognitive because it does not

Neural Networks in Artificial Intelligence 33

maintain a large set of environmental condition^. Thus complexity
is, for Smolensky, the acid test as to whether a model is cognitive.
One important task that cognitive models undertake is what
Smolensky calls the "prediction-goal", that is, to predict missing
features of the environment from the features that are present in the
stimuli. Closely related to this goal is the "prediction-from-
examples" goal, that is, to use previous examples to continuously
improve performance on the prediction problem.

Smolensky answers the argument of Fodor and Pylyshyn
(1988) (see the next section) that connectionist models are limited in
their usefulness, since mental states have constituent structure, like
that represented in a parse tree, and connectionist models don't
Clearly, this applies to localist connectionist models, which are
subject to combinatorial explosion in the number of nodes, since
there must be a node for every combination of concepts (e.g., the-
tall-blond-man-with-one-black-shoe node), but Smolensky, who
advocates distributed representations, thinks that they are less
vulnerable to this kind of criticism. He considers the idea of
Pylyshyn (1984) that in a distributed connectionist system the
representation of "coffee" is equal to the representation of "cup with
coffee" minus the representation of "cup". If the representation for
"cup with coffee" consists of units representing features like "solid
container", "handle", "brown liquid", "curved liquid", etc., then
when we remove all of the features of "cup" from this
representation, we are left with a representation of coffee, but in the
context of cup, that is, we have a representation of coffee that has
the coffee in the shape that is contained by the cup. Other
representations of coffee could be made in other contexts; for
Smolensky, there is no context-free representation of coffee.

The difference between local symbolic representations of a
word and distributed connectionist representations is that, with the
former type of representations, the context is established by the
connections that it makes with other local symbols (as in a semantic
network); with the latter type, the context is contained in the pattern
of activation itself. This disturbs people who believe in context-free
symbols.

Smolensky argues that connectionist models should be
intrinsically continuous, that is, have activations that are real-valued
rather than discrete, in order to escape from the brittleness and
inflexibility of conventional symbolic models. This allows for the

34 Issues in Neural Network Modeling

integration of multiple constraints with different weight, which all-
or-none rule-based systems cannot give you.

Smolensky believes that even the many connectionist models
which use binary data in their computations need not be
fundamentally discrete, but can all be mapped onto models that use
real-valued variables. He argues, therefore, that little is gained by
the use of discrete models, and their common use is based on the fact
that digital computers are basically discrete, and so researchers have
a tendency to think in discrete terms. But the brain is a highly
parallel analog computer, which deals with real values, and analog
computers can be built that embody connectionist models: for
example, Smolensky cites Anderson (1986b) and Cohen (1986).

Smolensky reformulates the idea that multiple "soft"
constraints can simultaneously contribute to a solution to a problem,
such as mapping an input to its correct output, in terms of what he
calls the "Best Fit Principle". This principle says that the system as
a whole arrives at a solution which is statistically the "best fit" to the
input, as specified by the various constraints known to the system.
This is expressed mathematically in terms of the harmony function
H, which is maximized by the machine. Harmony theory
(Smolensky 1986) gives the theoretical underpinnings of the
harmony function and the dynamic behavior of networks with
respect to it.

Smolensky gives an example of how a network can exhibit
behavior normally thought of as rule-governed: his system that does
qualitative physics. In this system, the knowledge of Ohm's law is
embodied in the configuration of parts of the system representing
current, voltage, and resistance. Each of these computes its value in
parallel, with hundreds of microdecisions (activation changes).
Macrodecisions are the result of many microdecisions. If a system
changes, as the result of receiving input, to a state in which Ohm's
law is satisfied, this is a macrodecision, even though underlying
behavior is following Ohm's law as such. The relationship is like
that between quantum mechanics and Newtonian mechanics;
examined at a gross level a physical system seems Newtonian, but
underneath it is really obeying quantum mechanics.

Harmony theory is illustrated by the work on schemata of
Rumelhart and his co-workers (1986f) (see section 4.2). This model
simulates the look-up of schemata on the basis of some triggering
information. Basically, what it does is perform a search in harmony
space. Although no schemata are explicitly stored—just correlations

Neural Networks in Artificial Intelligence 35

between rooms and objects—the schemata are emergent phenomena.
When primed on some of a room's contents—say an oven and a
cabinet—the system performs a search in harmony space, which
leads to a peak which corresponds to the complete set of the room's
descriptors. Yet the schemata are not directly present; they are
higher-level descriptors of rooms than are explicitly represented.

1.9. Connectionism: A New Form of Associationism?
Fodor and Pylyshyn (1988) advance a detailed critique of

connectionism, and a defense of the classical view (as they term it)
of cognition as rule-governed manipulation of symbols, as in LISP-
based AI or production systems. Basically, they view connectionism
as a more sophisticated form of associationism, masquerading in
new clothes. Associationism, in one of its forms, behaviorism,
reigned as the supreme psychological theory through the 1950s,
until it was displaced by classical cognitivism. For a history of
cognitivism and its victory over behaviorism, see Gardner (1985).
Fodor and Pylyshyn feel that many of the same arguments used
against the associationism of the 1950s—one of the most famous of
which was Chomsky's review of Skinner's Verbal Behavior
(Chomsky 1959)—can be used against the associationism of the
1980s, connectionism.

This is not to say that connectionism and behaviorism can be
equated; connectionism, for one thing, is representational, believing
that structures in the brain and mind represent objects and states of
affairs in the world. Behaviorism (at least in the forms advanced by
Skinner in his famous arguments against mentalism, which is what
he called theories that use mental representations) is not
representational, it is what Fodor and Pylyshyn call "eliminativist".
This means that behaviorism does not think representations are
important, but rather that behavior is, and, in fact, all talk about
representations is unscientific. Fodor and Pylyshyn think that all the
distinctions made in the connectionist literature between symbolic
and sub-symbolic representations miss the main point: that all nodes
in a connectionist network are symbolic. (A representation is the
same thing as a symbol, in their opinion.) A single node is a
symbol; so is a pattern of activation across nodes, much as a bit is a
symbol (if it is causally attached to something in the world), and so
is a bit vector.

36 Issues in Neural Network Modeling

Connectionist representations are typically collections of
activated nodes representing microfeatures (or rather, features,
since what is typically used in the connectionist literature as a
"microfeature" is something like "human", which is hardly an
elementary concept). Fodor and Pylyshyn’s main objection to this
form of representation is that it is unstructured; that is, it exhibits
little of the compositionality of representation that classical
representations exhibit. For instance, they posit that if the sentence
"John loves Mary" is represented by three activated nodes (+john-
subject +loves +mary-object), and we receive the additional
information that "Bill hates Sally", so that we now have the vector
(+john-subject +bill-subject +loves +hates +mary-object +sally-
object); we now have crosstalk producing the additional sentences
"John loves Sally", and "Bill hates Mary", "John hates Mary", "Bill
loves Mary", "John hates Sally" and "Bill loves Sally". One way to
avoid this is to have one node representing the entire complex
concept of each sentence; the problem is there are so many possible
sentences that no physically realizable brain could possibly contain
enough nodes. The other way would be to allow the representations
to have an internal tree-like structure such as {((John subject) loves
(Mary object)) ((Bill subject) hates (Sally object))}. The problem
with doing this, according to Fodor and Pylyshyn, is that no one, to
their knowledge, has shown how to do this in a connectionist
architecture. Touretzky (1989a) discusses issues involved in doing
compositional semantics in connectionist networks, with reference to
the problem of attaching prepositional phrases to noun phrases in
sentences.

The key to this problem is that each link between nodes in a
neural network represents a causal relationship between the nodes.
Semantic networks, which can be more general than neural
networks, allow for labeled links; the links can signify "causes", "is
contained in", "precedes", etc. A connectionist network that Fodor
and Pylyshyn suggest that draws inferences from a node standing for
both A&B to ones standing for A and B is shown in Figure 1.3.
Although the nodes are labelled to make it clear what they signify,
these labels are not part of the connectionist representation. Fodor
and Pylyshyn point out that the difference between this network and
the classical implementation of this inference is that, in the classical
case, the symbol string "A&B" contains as a part the strings A and
B, whereas this is clearly not true of the top node in the diagram.

Neural Networks in Artificial Intelligence 37

The causality shown in Figure 1.3 is insufficient to account for the
compositionality, at least in this simple form.

Fodor and Pylyshyn point
out, additionally, that connectionist
models learn that concepts are
statistically related. So, for
instance, a connectionist model
learns that A follows from A&B
because the two statements are
statistically related in the
environment. It does not observe
the structure of A&B in order to
infer A, which is obviously one of
the salient features of A&B.

Two basic properties of
language augur well for the
classical theory and badly for connectionist theory, according to
Fodor and Pylyshyn. These are two well-known properties of
language, its productivity and its systematicity. Any natural
language consists of, for all practical purposes, an infinite number
of well-formed sentences; this is referred to as the language's
productivity. They quote a remark of Rumelhart and McClelland
(1986e) in which they say that recursive center-embedded
sentences—such as "The dog the man walked barked"—are hard to
process, and that this is evidence that recursive capabilities are not
central to cognitive capability. Fodor and Pylyshyn dispute this
point, citing examples in which recursive embeddings are both easily
understood and natural. In order to handle recursive embeddings,
you need a classical (Von Neumann machine) architecture—one
might presume—or a connectionist implementation thereof. So if
you think that recursive productive features are critical to language,
one might be tempted to choose a classical theory, according to
Fodor and Pylyshyn.

Many sentences of the same structure occur in any given
language, such as "the tree is in the park" and "the man is in the
office"; this is the systematicity of language. This is what has caused
linguists to posit the existence of syntactic categories. These
categories necessitate the creation of linguistic structures that go
beyond the simple lists of features that connectionist structures
imply.

Figure 1.3. A connectionist network
that represents the assertion that
A&B implies A and B individually.
From Fodor and Pylyshyn (1988).
Reprinted by permission.

38 Issues in Neural Network Modeling

Fodor and Pylyshyn take some time to consider some of the
issues that have made connectionism so appealing to so many in
cognitive science. First of all, the issue of parallelism: the idea is
often advanced that since the brain has many neurons active at once,
and no apparent central control, any plausible cognitive architecture
would have to be "massively" parallel. Of course, on the lowest
level, a standard Von Neumann computer is highly parallel, since
electrical signals are active throughout both CPU and memory, but
on a higher level of abstraction it is not parallel. Fodor and
Pylyshyn point out that not only connectionist models that are
parallel; classical symbolic programming languages can be parallel,
for instance Hewett's (1977) ACTORS and Hillis's (1985) parallel
version of LISP for his Connection Machine.

Designing algorithms for networks of traditional processors
and shared-memory multiprocessors has become a fertile area of
computer science research. Fodor and Pylyshyn point out that not
only connectionist representations can be distributed. A traditional
memory register can be distributed; all that is necessary is for it to
divide its contents and spread them out across the machine’s
memory. If it is desired, a transformation like a Fourier transform
can be applied to the data so that, if part of the transform is lost
(after it is split into chunks and distributed across the memory), the
original signal can still be constructed, albeit with a loss of quality
(the sort of "uniform degradation" that connectionists often talk
about). They point out that an array can be functionally local, but
distributed across the entire machine (using a hash table, for
instance); representations are damage-resistant unless they are
physically localized in memory and non-redundant.

Another point about connectionist models that is often raised
is their ability to deal with representations and stimuli that are
continuous rather than all-or-none. Fodor and Pylyshyn point out
that there are lots of classical models that use continuous variables;
for instance the use of Bayesian probabilistic inference techniques in
expert systems or systems that use fuzzy logic (Zadeh 1973).
Statistical properties of stimuli can emerge from the interaction of
many smaller deterministic processes. (For instance, to over
simplify, the classification of a bird can emerge from a set of
features, some of which are necessary; the classification process may
depend on how many non-necessary features are present, their
strengths, or a function thereof.)

Neural Networks in Artificial Intelligence 39

It is often maintained that connectionist architectures
implicitly model rule-governed behavior whereas classical
architectures make the rules explicit (and presumably implicit rules
are better). Fodor and Pylyshyn claim that classical architectures
can be rule implicit, when functions are wired in to the machine.
Connectionist architectures can be rule explicit, as well,- but only by
implementing a classical recursive machine. They add that if
explicit rule learning turns out to be an important part of
psychological theory, then connectionist systems are in trouble.

A major argument that is advanced for connectionist
architectures is that they are biologically plausible, that is, that they
are consistent with known facts about the brain. Fodor and Pylyshyn
briefly summarize these facts as follows: connection patterns are
important to how the brain processes information; memory is
distributed, not localized; neurons work with synaptic thresholds; a
neuron is more likely to fire, given a certain amount of input at its
synapse, if it has recently fired. Fodor and Pylyshyn claim that
none of these facts strongly constrain what type of architecture the
mind must have. Low-level structure—and this is a point that Fodor
has emphasized in many of his books—does not necessarily reflect
high-level structure; the theory of atoms, doesn't look anything like
biology, for instance. There is no reason that the brain could not
implement a recursive classical architecture. Moreover, Fodor and
Pylyshyn lament that the naive implementation of these "brain-like"
models has created a revival of associationist psychology.

Fodor and Pylyshyn do not want to dismiss connectionism
totally, they just want to reduce it to the level of a theory of how
specific psychological algorithms are implemented. Such
"properties" of computers such as the idea that their memory is
permanent, that they use exhaustive search, that they are logical and
don't make mistakes, are not properties of an algorithm but of its
underlying implementation in a digital computer; algorithms can be
devised that "forget", that perform faulty reasoning, make errors in
retrieval, etc.; basically any process that can be theorized about can
be embodied in a conventional computer (this is the Church-Turing
thesis, the widely accepted statement that Turing machines are
universal, that is, that they can compute anything we can conceive of
computing).

According to David Marr (1978), every process can be
understood on two levels: the level of formal specification (theory),
and the level of implementation. The problem that Fodor and

40 Issues in Neural Network Modeling

Pylyshyn have with connectionist models is that their authors offer
them as theories of cognition, not as implementations of higher-level
formal processes. I would add, in defense of connectionists, that
studying lower-level neuronal implementations may produce
interesting new insights about higher-level processes, much as
physics has informed theory formation in chemistry. Of course,
there is no reason that neural theories need constrain psychological
theories much at all, if the brain turns out to be a general purpose
machine, like a Von Neumann computer.

Fodor and Pylyshyn consider four possible routes that
connectionism could take from here, which are: (1) to maintain its
present course; (2) to admit structured mental representations but
retain an associationist account of their processing; (3) to reduce
connectionism (and neuroscience) to the status of an implementation
theory; or (4) to accept connectionist accounts of a certain subject of
cognitive processes—notably the forming of statistical inferences
from sets of stimuli—but do not accept connectionist accounts of
such phenomena as linguistic productivity and regularity. It is hard
to say what route connectionism will take; much depends on the
success of the current research program.

2
Neural Network Methods

for Learning and
Relaxation

2.1. Introduction
Most work in neural networks involves learning. The goal of

most neural network models is to learn relationships between
stimuli. There are at least three ways that learning models can be
classified. The first way concerns the nature of what is learned. A
learning model can be a hetero-associator or an auto-associator. A
hetero-associator is a network that computes a function between a set
of inputs and a set of outputs. An auto-associator is a network that
completes an incomplete input pattern. These two types of models
are not different in principle, because a hetero-associator can always
be reduced to an auto-associator by concatenating an input pattern
and its associated output pattern, to make an input pattern of the
auto-associator. Thus the performance of the hetero-associator can
be then achieved in the auto-associator, by simply presenting, as the
partial input of the auto-associator, the input pattern for the hetero-
associator, and having the machine complete the pattern to produce
what was the output pattern of the hetero-associator.

Auto-associative memory is extremely useful for the
organism, and it is the way that the human memory system seems to
work. Everyone has the almost constant experience of having a
memory evoked by a particular cue that formed part of the
memory: for instance, seeing a hat similar to one one's father used
to wear reminds you of him wearing that hat. Content-addressable
memories are also useful for database applications, because one
typically wants to look up some record in a database based on some
part of it (which is called the key.) Traditional approaches have
involved building indices on each item of a record that one wants to

42 Neural Network Methods for Learning and Relaxation

look for. Organizing your memory in such a way so that content-
addressability is an automatic feature would be desirable; it seems
that this is what the brain has done.

The second way that learning models can be classified applies
only to hetero-associators. These can be classified based on what
they compute. Typically they compute either a general function of
their input, in which there are about as many outputs as inputs, or a
classification, where a large set of input patterns is mapped onto a
relatively small set of output patterns, which represent sets into
which the input patterns are classified.

Yet another way that learning models can be classified is in
terms of the amount of guidance that the learning process receives
from an outside agent, typically referred to as the teacher.
Unsupervised learning occurs without a teacher; such a learning
algorithm— the various kinds of competitive learning discussed in
sections 2.15 through 2.18 are examples—that learns to classify the
input into sets without being told anything. It does this clustering
solely on the basis of the intrinsic statistical properties of the set of
inputs.

Supervised learning adjusts weights on the basis of the
difference between the values of output units, given an input pattern,
and the desired pattern, given by the teacher. Error back-
propagation (see section 2.12) is a supervised learning procedure.

The third type of learning has a long history in psychology:
reinforcement learning. This is a type of supervised learning in
which very little information is given the algorithm; typically one
bit, which signifies if the output that the network provided to the
given stimulus is good or bad. Many people feel this type of learning
(which must of necessity proceed more slowly than supervised
learning, since less information is given) is more psychologically
valid, since people are not normally provided with a complete
example of the desired behavior, especially in situations in which
they are not explicitly taught (such as in child language learning).

While most work in connectionism is limited to learning of
weights, many other things can also be learned, such as the topology
of the network, the activation functions, even the learning rules
themselves. Several authors have explored the possible of learning
where in a net to place nodes and connections (see, for example, Ash
1989, Dieterich 1988, Honavar & Uhr 1989b, Honavar & Uhr
1989a).

Neural Networks in Artificial Intelligence 43

Relaxation is the process whereby the unit activations (not the
weights) change over time until they evolve to a state in which
activations are no longer changing, and thus the network can be said
to have "relaxed", i.e. fallen into a state of little activity. Relaxation
differs from learning in that only activations change; in learning, the
weights change. Some network paradigms, notably feed-forward
networks, which will be discussed later on in this chapter, require
only one update per unit in order to reach their final state. Other
types of networks, such as the Boltzmann machine (also discussed
later in this chapter), require many updates, and thus undergo
relaxation. Relaxation is especially applicable to constraint
satisfaction problems such as vertex-labeling in line drawings (Waltz
1975) and line and edge detection and enhancement (Zucker,
Hummel & Rosenfeld 1977). Mackworth (1977) supplied a useful
discussion of methods for the satisfaction of multiple constraints. For
more recent discussions of relaxation, see Hummel & Zucker (1983)
and Geman & Geman (1984).

The following sections give an overview of the main neural
network designs and learning methods. We start with a review of
the different types of model neurons devised by Feldman and Ballard
(1982), which can be used to construct connectionist models. We
then discuss two of the earliest devices, the Adeline and the
Perceptron, which are relatively simple and limited in their
computational power. In both of these models the error—difference
between the desired and actual output—is used as a corrective to
bring the performance of the model closer to that desired. Thus
these two models employ supervised learning.

We then proceed to another simple associative network that
uses Hebbian learning, that of Anderson. This is a network that uses
matrix multiplication to compute associations between input and
output vectors, and which uses as correctives to its matrix values
correlations (products) of single components of these vectors. Thus,
following Hebb (1949) connections between components that are
simultaneously active are strengthened. This is a simple form of
associative learning.

We then move on to another type of associative learning, that
of Kohonen (1988). In the auto-associative version of Kohonen's
work, he views an input vector as a corrupted version of its true
value. He uses a mathematical technique, the Gram-Schmidt process,
to compute the stored vector that is closest to the noisy input.

44 Neural Network Methods for Learning and Relaxation

These first four models are linear associators, since, in each,
their output is a linear combination of their input. The remainder of
the models discussed are non-linear, i.e. their outputs are non-linear
functions of their inputs. A non-linear model can compute a much
greater variety of functions than a linear model, although it is
surprising how much linear models can handle.

The first non-linear model we discuss is that of Hopfield. In
this model, neurons reset themselves randomly and asynchronously if
their weighted inputs exceed a threshold. Hopfield's network is auto-
associative. By setting the weights in his network in a particular
fashion, Hopfield is able to show that the state of his network always
converges to a stable state. Any such network, Hopfield shows, has a
set of stable limit points, which can be used to store memories. Thus
the network functions as an auto-associator, because each input—that
is, initial state of the network—leads to a stable state that
corresponds to a stored memory. Moreover, unlike a linear
associator, the stored patterns need not form a linearly independent
set.

We then discuss the more complex neuron model offered by
Hopfield and Tank, in which a neuron's behavior is modeled by a
differential equation. We discuss the application of this neuron
model to problems in optimization, in particular, the traveling
salesman problem.

Hopfield used his initial network to store memories that
correspond to local minima in a function that, borrowing from
thermodynamics, he defines as the energy function of the network.
If the goal of the model is not to store a set of memories, but to find
a global minimum in the energy function that corresponds to an
optimal solution of some constraint-satisfaction problem, then an
extension of the Hopfield network, called the Boltzmann machine, is
used. The Boltzmann machine is basically a stochastic version of the
Hopfield network. The state of a given node in the network is based
both on how much input it is receiving as well as a parameter called
the temperature. The higher the temperature, the more randomness
there is in the system. This type of network lends itself well to
finding global minima. We also discuss a learning rule to make a
Boltzmann machine reflect the state of the environment.

Next, in our discussion of network paradigms, we turn to the
best-known neural network algorithm, the error back-propagation
algorithm. This is an extension of the Perceptron to systems with
one or more layers of hidden units between the input and the output.

Neural Networks in Artificial Intelligence 45

In this algorithm, the difference between the desired output and the
actual output is used to adjust the connections first between the
output layer and the hidden layer right below it. This error is then
propagated backward in the network to layers below the top hidden
layer and ultimately used to adjust connections between the input
units and units above them. Rumelhart and his co-workers show that
this algorithm converges to a local minimum in the error—that is,
in the difference between the desired and actual outputs.

We discuss a variety of problems to which Rumelhart and his
co-workers applied the back-propagation algorithm. These include
computing the exclusive-or function, which the two-layer Perceptron
was unable to handle.

We then turn to a variety of unsupervised learning methods.
The first three examples we consider are versions of competitive
learning, in which various digits or sets of units compete to
recognize features in the input. These algorithms resemble
Darwinian natural selection. We then consider a class of algorithms
that, while not explicitly neural network algorithms, also take their
inspiration from evolution: genetic algorithms. These are
algorithms that model populations of organisms as populations of bit
strings, in which each bit string is itself a solution to a problem.
Both competitive learning and genetic algorithms "evolve" solutions
to problems.

The final type of algorithms that we consider are
reinforcement algorithms. The three main ones that we discuss all
were developed at the University of Massachusetts, in Andrew
Barto's group. The first of these algorithms is called the associative
reward/penalty (Ar.p) algorithm, which is used to classify a set of
inputs. The system learns the classification of inputs based on a
reinforcement signal. We then discuss the work of Sutton on what he
calls temporal difference methods, which are useful in predicting
events that are in time series.

We then discuss the work of Anderson, one of Barto's
students. Anderson applied both back-propagation, and the AR.p
algorithm, to a set of problems. He also adapted the work of Sutton
to use in the problem of learning heuristics for problem solving for
problems normally associated with heuristic search. This type of
problem solving has not been attacked by many other researchers
using the connectionist paradigm.

Chapter two concludes with discussions of various extensions
of the error back-propagation algorithm, of attempts that have been

46 Neural Network Methods for Learning and Relaxation

made to model sequential phenomena in neural networks, of a
method for compressing information using back-propagation, and of
an attempt to embody recursive structures in a neural network.

2.2. Types of Model Neurons
Feldman and Ballard (1982) reviewed a variety of different

kinds of model neurons. The simplest kind is the p-unit. The output
v of the /7-unit is proportional to its potential (activation) p, and p is
adjusted based on its weighted total input:

P-P+fiE Wkik

where p ' is p's value after adjustment, the wk and ik are the weights
and the inputs, respectively, on the input lines entering the unit, and
P is the rate of change. If the potential is less than a threshold 9,
then the unit's output is zero, otherwise it is simply the potential p,
rounded off. Feldman and Ballard limited the number of output
values to the integers from 0 to 9; this is an attempt to model the
limited information transmission capacity of the individual neuron
in a single firing. P -units were used in the Perceptron and the
Adeline, which were early learning models, described in section 2.4.

A more complex unit they devised is the max-of-sum unit.
For example, if we have a series of inputs ij, i2, i'7 such that ij
and *2 are connected to one input site, i3 and i4 are connected to a
second site, and z'5 , z<5 and 17 are connected to a third site, then the
potential of a max-of-sum unit is

p '= p + p M a x (i] + i 2 - (p , i 3 + i 4 - < P , i s + i 6 + b - (p)

where q> is a noise threshold. Of course, units can be connected in
whatever combinations are desired. This rule is the continuous
analog of a disjunction of conjunctions, which is disjunctive normal
form, a standard form for expressing logical expressions. Since
disjunctive normal form can express any assertion in propositional
logic, a network of max-of-sum units can compute arbitrarily
complex logical functions of their input.

Another kind of unit that Feldman and Ballard discuss is the
4-unit, which is a discrete unit. Every binary <y-unit has two states,
firing and null. If a unit has n inputs, then its behavior is described
by a table with rows corresponding to states of the input units; the

Neural Networks in Artificial Intelligence 47

last item in each row is the output, given the input state in that row.
These units can be built out of standard digital logic; ^r-units are at
the boundary between digital logic and neural networks. One can
also have 3-valued or w-valued <gr-units.

Feldman and Ballard have also devised a unit that is a hybrid
of p and q, called, naturally enough, the p-and-q-unit. One way to
construct such a unit is to have it respond like a p -u n i t—
continuously—while it is in one of two states, which they refer to as
the normal state. When it is in the other state, the recover state, the
unit ignores input. This unit is intended to model the behavior of real
neurons, which need some time to recover between firings. The way
this is implemented is to negate the potential when it exceeds some
threshold, and put the unit into the recover state, for some number
of updates, after which it goes back into the normal state and its
potential starts to respond to input.

The general definition of p-md-q units augments the p and v
of p -units by a set of states {q}. p, q, and v are updated by three
functions/, g, and h:

p'=f(i,p,q)
q’=g(i>p>q)
v’=h(i,p,q)

where i is the vector of inputs to the unit in question, and q is the
current state, drawn from the set {q}. These functions are usually
logical, linear, or semi-linear, although they can be arbitrary.
Feldman and Ballard also introduced weights into p-anA-q units.

Many of the network techniques discussed by Feldman and
Ballard are discussed elsewhere in this book, such as winner-take-all
networks and coarse coding, but I want to mention one such
technique here, that of one unit mediating the connection between
two other units in a gated connection One way to do this is to have
the activation of a unit multiply the input that would otherwise be
sent along the connection between two other units. The concept of a
third unit mediating the connection between two other units can be
generalized to three units that are connected to each other via a
central point and which satisfy equations which predict the activation
of any one unit given the activation of the other two.

48 Neural Network Methods for Learning and Relaxation

2.3. Types of Activation Rules
A neural network can be characterized by the type of rule that

is used to compute the activation of units in it. Normally, the
activation A of a node j is some function / of the total weighted input
I coming into j:

WiXi
i

where i ranges over the nodes inputting to j , xi is the activation of
the ith node and wi is the weight on the connection from node i to
node j.

The major rules that have been used by connectionist
researchers are:

(1) a linear activation rule:
A=kl

where k is some constant

(2) a binary-threshold activation rule:
A - l if I>no
A=0 if I<no

where no is a threshold

(3) a semi-linear, sigmoid activation rule

l+e-i

Linear

o = bi + a

Threshold

O = 1 if I > t
0 otherwise

Semilinear

1 +e-1
Figure 2.1 Some neuronal activation rules. From Oden (1988a). Reprinted by
permission.

Neural Networks in Artificial Intelligence 49

These rules are plotted in Figure 2.1. As we will see, the linear rule
is limited in the number of functions that networks that are built
using it can compute. The other two rules have been used in systems
that do not have this limitation. They both have the interesting
property that they transform their input to produce an activation
between zero and one.

2.4. Early Learning Models
Two of the first neural network models introduced were the

Adaline (Adaptive Linear Element) of Widrow (1962) and the
Perceptron of Rosenblatt (1961). The adaline is composed of a set
of input units xi and a single output signal y. It was originally
specified in terms of an electrical circuit. The output y is related to
the input values x by

y= X WiXi+M
i

where w is a weight vector and fio is a bias. (In its original
formulation, the adaline also contained a quantizer which output -1
if its output were negative and +1 otherwise. This was irrelevant to
the learning process.)

The adaline does supervised learning: the purpose of the
machine is to compute a particular function based on the training
given it in input/output pairs. If yk is the output on the £th time
step, and the desired output is y, then the adjustment in the weights
is given by

w i,k + l =w i>k+(ylc-y)o-k

where afc is the learning rate on the Ath time step. Thus the weights
are adjusted by a term involving the error in the output signal. It
can easily be shown that if the set of input vectors presented is
linearly independent, the weights will converge; otherwise they will
oscillate. This weight change rule is called the adaline convergence
rule, although though it might just as well be called the adaline
oscillation rule!

In order to remove the oscillations, the learning rate a£
would have to decrease over the course of the learning. Kohonen
(1988) shows that the adaline convergence rule minimizes the error

50 Neural Network Methods for Learning and Relaxation

Figure 2.2. The Perceptron. The bottom
layer is the input layer; the top layer is the
output layer. Activation flows upward

ylc-y when the output of the adaline at time step k, yk, is viewed as
a random variable with expectation y.

The P e rcep tro n
(Rosenblatt 1961) is quite
similar to the adaline. In one
version there is a set of
binary input units, each of
which is com pletely
connected to a set of binary
output units (see Figure 2.2).
For each of these output
units, zero is output if the
weighted sum of the inputs at
a given output unit is less
than zero; one is output if this weighted sum is greater than zero.
Ifwik is the weight between the ith input unit xi and a given output
unit, and yk is the actual output and y the desired output (both at
time step k) then the learning rule is given by:

wi,k+l = wi,k + Myk-y)*i

The main difference between this and the adaline is that, in the
perceptron, the xi and yk are binary rather than real-valued. If the
above formula converges, the machine is capable of computing the
function on which it is being trained. Unfortunately, it has been
shown that the above equation often does not converge, so the
perceptron is severely limited in the number of functions that it is
able to compute. For instance, one can prove that it is impossible to
compute the exclusive-or function using the perceptron. For details,
see Minsky and Papert (1969).

Both the perceptron and the adaline are feed-forw ard
networks—that is, activation flows in one direction, from the input
units to the output units. In networks that are more complex than
these simple two-layer models, additional layers may be placed
between the input and output units. If activation always flows in one
direction, from input to output, the network is still feed-forward.
The error back-propagation algorithm (see section 2.12) normally
uses a feed-forward network.

Some of the literature refers to a network with an input layer
and an output layer as a one-layer system, not counting the input
layer; under this convention, a system with one hidden layer is a

Neural Networks in Artificial Intelligence 51

two-layer system, etc. In this book, we will be counting all the
layers when we describe a system.

A third early model, the learning matrix (Steinbuch 1963)
was developed to explicitly simulate classical stimulus-response (S-
R) conditioning. In this system, binary stimuli were presented on
one set of lines, and responses were trained and evoked on the
second set of lines. The two sets of lines crossed so as to make a
matrix, and there were connections made at the crossing points. The
machine was trained by placing stimuli and responses on the matrix
and then adjusting the weights of the connection points.

If the input lines are denoted by xi and the output lines are
denoted by yj, then the weight of the connection wij is increased
during training if xi =1 and yj=l (positive reinforcement); it is
decreased if xi-1 and y j-0 (negative reinforcement). This increase
or decrease in weight was a small fixed amount. The model
achieves the same result as that achieved by classical conditioning,
which this model was designed to simulate. If all the changes are
small and fixed in absolute value, then the weight wij comes to
approximate the expected value of the input line xi, given that yj is
activated, as Kohonen (1988) points out. In a simple associative
network, the possibility of negative reinforcement is removed
(Willshaw, Buneman & Longuet-Higgins 1969). In this case, as
Kohonen shows, the recall process involves a correlation of the
current input pattern with all of the input patterns given during
training, to determine which output pattern (or linear combination
thereof) of the ones given during training should be produced
during recall.

A similar model to the learning matrix was developed by
Taylor (1956). This used Hebb’s (1949) learning rale(see the next
section).

2.5. Hebbian and Associative Learning
Hebb (1949) proposed a simple rule for learning in neurons,

which has recently been shown to be biologically plausible
(Schwartz 1988). In this rule, the strength of a synapse between two
neurons is strengthened when both of them are active.

Anderson (1983), among others (e.g. Cooper, Liberman &
Oja 1979, Bienenstock, Cooper & Munro 1982), has studied simple
Hebbian associative learning. He takes a set of input neurons, whose
activations are considered as a vector / , and a set of output units,

52 Neural Network Methods for Learning and Relaxation

whose activations are g. If every unit i n / is connected to every unit
in g, these connections can be represented by an nxn connectivity
matrix A. This matrix can learn the association between/and g by
the modified Hebbian learning rule in which the change in the value
of the matrix element Aij is AAij=kgjfj where k is a constant, the
learning rate. In vector notation, this is: AA=kgfr, where fT is the
transpose of / (the transpose is used so that the dot product can be
written in vector notation).

When k=1, in which case the network learns the association
between g and / in one learning step, then g can be obtained by
inputting/using the formula g=Af, since A has come to have the
value gfT, assuming it was initially zero.

In general, one wants to store a set of associations g;-// in the
connection matrix A, not just a single association. You can use the
same learning rule as above, and mix different associative pairs in
training the matrix. Each matrix element may participate in the
association between several pairs of vectors, so this is a distributed
memory model.

This will work well only if the input vectors are orthogonal to
one another; that is, if their dot products are zero. Otherwise there
will be crosstalk; if f j and /2 are not orthogonal, and g j and g2 are
their desired outputs, the output that one obtains when inputting//
or /2 will be some linear combination of g] and g2, rather than
either one of them. This is a problem with linear associative
networks that Hopfield's work and other work on non-linear
methods was designed to fix (see section 2.8). The surprising thing
is the wide range of phenomena for which linear methods are
adequate.

Since there can be at most N orthogonal patterns in an N-
feature input vector, the matrix is limited to N associations. N N-
feature vectors chosen at random will tend to be close to being
orthogonal to one another, but not absolutely so, thus there will
usually be some level of error.

Anderson applied this model to learning a prototype of a
category. He borrowed his input patterns for category formation
from an experiment done by Posner and Keele (1968a,b). Posner
and Keele showed subjects patterns of dots on a two-dimensional
screen. The initial patterns of N dots that subjects were shown were
called prototypes. Then they were shown examples of the prototype,
which were formed by randomly perturbing each dot in the

Neural Networks in Artificial Intelligence 53

prototype a relatively small distance. This was repeated for several
different prototypes, and subjects were then asked to classify a
stimulus (which may or may not have been presented as one of the
examples) as belonging to one of the prototype classes that have been
shown.

Knapp and Anderson (Knapp & Anderson 1984) repeated the
Posner-Keele experiment, varying the number of examples that
subjects saw of each prototype, and measuring the percentage
correct classification rate. They then modeled the subjects'
performance. They stored the patterns on a hypothetical two-
dimensional visual cortex, where a dot in the input represented a
sharp Gaussian peak in the response of the cortex. As trials
proceeded, this surface received peaks from all examples of a
prototype, and thus came to represent the average of all the
examples (see Figure 2.3).

From the point of
view of the associative model
given above, each two-
dimensional cortical activity
pattern was collapsed to a
single row in the matrix A ,
and the output patterns were
1000... , 0100..., 0010..., etc.
representing the N different
classification decisions. Each
row of A represented an
averaged pattern of activity
of all the examples of a Figure 2.3. Response surfaces from Knapp
prototype; since only one & Anderson (1984). Reprinted by
node is activated in the permission,
output, learning trials result
only in the modification of one row.

Given a particular example, more than one row may respond
to it, and thus more than one output unit (the output units o[respond
to a dot product of the ith row of A with an example input fj) may
respond. To make the classification of the input into a prototype
class, Knapp and Anderson simply chose the output unit that
responded the most, thus making their model non-linear. The model
exhibited correct classification response curves on new, old (that is,
previously seen by the system), and prototype input patterns with

MEMORY FORMATION

EXEMPLARS
PRESENTATIONS EACH

6 EXEMPLARS
1 PRESENTATION EACH

54 Neural Network Methods for Learning and Relaxation

respect to the number of learning trials that were qualitatively quite
similar to those exhibited by human subjects.

Anderson also employed a simple non-linear associative
model, the so-called "brain-state-in-a-box" (BSB). The BSB update
rule is given by

x(t+l)=x(t)+Ax(t)

where x(t) is the the input vector, and x(t+ l) is the auto-associative
output. Bounds are placed on each of the dimensions of x, typically
+1 and -1, so that it is bounded by a hypercube, and the system will
naturally drift into one of the comers of the hypercube.

He applied the BSB model to a simple reasoning task designed
as a pattern recognition task. In this task, there were triples of
words: the first word in a triple was drawn from a set of human or
divine names, e.g. Plato, Zeus; the second word was drawn from
(man,god), and the third was drawn from (mortal,immortal). Each
of these symbols was encoded as a string of -l's and +l's (a value of
zero on all the places in the string indicated the absence of a
symbol.) The patterns for the various symbols were not orthogonal.

He did Hebbian learning, of the type described above, using
each word as a stimulus, with zeros in the positions of the remaining
two words. The model was also taught valid pairs of words. After
learning was complete, and it was presented with a valid pair of
words, it always filled in the missing word correctly. Thus the
system learned to do syllagistic reasoning via pattern completion;
for instance, it completed the pattern (Socrates man -) as (Socrates
man mortal). Nonsense inputs, such as (Zeus man immortal), the
model cannot handle; it refuses to converge to a comer of the box in
either the name or species location.

In related work on Hebbian learning, Linsker has shown in a
recent series of papers (Linsker 1986a,b,c,1987) that many of the
receptivity characteristics of neurons in the primate visual cortex
can be discovered using this method of learning, extended to a
multi-layer network.

2.6. Kohonen's Work on Associative Learning
Kohonen (Kohonen, 1988) has studied auto-associative and

hetero-associative mappings. The simplest such mapping is that used
by Anderson: a linear associator of the form .y=A*, where x is the

Neural Networks in Artificial Intelligence 55

input vector and y the output vector. There are a set of such pairs
xlc and yk Kohonen studied mappings that are optimal in the sense
that if the xk are corrupted by noise, the yk are still arrived at. For
an auto-associative memory, each xk can be viewed as a fragment
that functions as a key to retrieve the concatenated total vector z=(x
followed by y).

Suppose that, in a given associative example, the xk are
viewed as vectors spanning a sub-space of RN, where N is the
dimensionality of the vectors. Then any particular vector x is the
sum of a linear combination of the xk which best approximates x's
projection on the sub-space spanned by the xk, plus a residual. Thus

x= r+ Z akxk
k

If x is close to one of the xk, say xj, the linear combination will be
close to ajxj. There is a mathematical technique to compute this best
linear combination, the Gram-Schmidt process (see Kohonen 1988
for details). Of course, the xk have to be known.

It turns o u t, and Kohonen demonstrates mathematically, that
if the vector in question x is a noisy version of one of the vectors
xk, say xr, so that x=xr + r, then the linear orthogonal projection

£ akxk
k

of x onto the xk's space, as computed by the Gram-Schmidt process
(in conjunction with least squares), is a better approximation to xr
than x itself. This result can be the basis for retrieval of the best-
fitting pattern from a noisy input, and has been demonstrated to be
quite effective by Kohonen. Here xr is the pattern to be retrieved,
and x is the noisy input. For instance, Kohonen stored 100
photographs of faces, and he used keys missing chunks of the photos,
or seriously blurred by noise, to successfully index into this
database, using this method.

The complement of this auto-associative mapping, which
retrieves the best Xr from x, is what Kohonen calls the "novelty
filter". This extracts just what is new, that is the residual r. This
can detect "missing" or "new" pieces to a pattern. For instance, if a
capital A is one of the stored patterns, and a capital A is presented,
but without its horizontal bar, then the horizontal bar is the output

56 Neural Network Methods for Learning and Relaxation

of the novelty filter. This can be readily obtained by simply taking
the difference between between x and xr.

Kohonen also did, by the same orthogonal projection
technique, an auto-associative experiment. Here images of faces
were concatenated with an identifying tag, and then auto-associative
recall of faces missing their tags was attempted, with half the image
serving as key. The tags were unit basis vectors in which one
element was unity and the rest were zero, that is, 1000..., 0100...,
etc. In all the recall experiments the tag bit was set significantly
higher than the rest of the bits in the tag by the retrieval algorithm,
with the quality of recall improving with increases in the proportion
of the reference image used as key, and worsening increases in the
number of reference faces that are stored.

2.7. Willshaw's Binary Associator
Willshaw (1981) devised an associative network consisting of

an array A of mxn units with binary states, which is designed to
associate ordered pairs of binary vectors in which the first vector
(x) is of length m, and the second (y) is of length n. It does this by
setting the state of unit Ay to 1 if x i= l and y i = l . Each output unit
is receives input from all of the array units in its column. The
output units have a threshold of q, where q is the number of input
units that are active at any given time. This allows the the output
unit to accumulate enough "votes" from active input units to set
itself to one. The only way that an output unit can come on
erroneously is if m outputs exist in the same column from other
associations. Willshaw showed that if q is approximately equal to
log m, the probability of such crosstalk becomes low. Willshaw's net
can also be used as an auto-associator, in which case the array is
square, and it can be used to complete noisy or incomplete patterns.

2.8. Hopfield's Non-linear Auto-associator
Hopfield (1982) notes that while people can design computers

to perform specific tasks, evolution provides no such designer. Thus
configurations of neurons must have computational properties that
are emergent from their individual properties and connections to
one another. These networks can be "designed" by evolution in the
sense that the connection schemes that prove useful to the survival of
the organism are preserved.

Neural Networks in Artificial Intelligence 57

Hopfield considers a wiring scheme for implementing a
content-addressable memory (auto-associator). He begins with a
certain class of physical system whose behavior gives you an
automatic form of content-addressability. The state of a system like
this can be described by giving values to a set of coordinates X] ,
X2 , ..., Xn in an N-dimensional space, called a state space, and
the way the system evolves in time corresponds to a flow in this state
space (in ordinary 3-dimensional space, this would simply be a
curve through space.) Given certain types of equations—such as
those described below—governing the state of the system over time,
there are stable points in the state space towards which all the points
in the immediate neighborhood flow towards. These are called
locally stable limit points. Thus if the state at the limit point is the
memory that is stored, and the states near the limit point represent
partial knowledge of this memory, then starting the system at the
partial knowledge state will cause it to settle into the complete
knowledge state. This is Hopfield's method of achieving content-
addressability.

More specifically, he uses neurons with binary states. The
activations of the neurons correspond to the individual coordinates
in the state space. Each neuron i has two possible values for its
firing rate (activation) V/„ 0 and 1. If two neurons i and j are
connected, the strength of their interconnection is given by Tij- Each
neuron has a fixed firing threshold £//. Each neuron resets its state at
random times, but the average rate of state resetting is W. Thus the
system, like the brain, is asynchronous, since neurons in the brain do
not all fire at the same time. Each neuron resets itself based on the
following rule:

Vi <—/ if input >Ui
Vi <r-0 if input <Ui
where input= T yV,-

The total input that a neuron i receives is the sum of the
activations of all the neurons connected to it, weighted by the
strength of its connection to each one of them. This rule is similar to
that used by perceptrons, Hopfield points out, but, as he notes,
perceptrons are strictly feed-forward, whereas his network is bi
directional.

58 Neural Network Methods for Learning and Relaxation

Each state of the system can be represented by a bit vector of
length n. Hopfield has his network store a set of k such states. He
does this by using the following "storage prescription" for the
weights:

Tij=Z (2Vsr l)(2Vj-l)
S

where i and j are neurons and s is one of the k states. Each of the
terms in parentheses can take on the value 1 or -1, since the Vi are
binary; thus the value of the product is 1 if the two bits of the state
in question are the same, or -1 if they are different. Each state that
is being stored is given an equal "vote" in determining the overall
weight; hence the summation sign.

There are about rfi connections; effectively what Hopfield is
doing is encoding K n-bit vectors in n? weights. By substituting in
the formula for the activation of an individual neuron the formula
for the weights, he obtains

input=X TijVf'=Z (2V*-1) [I Vf'(2Vf-l)]
i s i

The mean value of the bracketed term in parentheses, Hopfield
finds, is 0 , since any two neuron states tend to be uncorrelated, and
(2Vi'-l) is as often 1 as it is 1, except when s=s', in which case, the
average value is n/2 , since on average half the bits in a state s are 0
and half are 1. Thus the input is approximately equal to

f<2Vf'-l)

since all the terms in the initial summation go away except for the s'
term.

A critical aspect of Hopfield's model is that it is non-linear.
The model has a step function response to input. Actual neurons
have a response that is similar to a sigmoid function. Hopfield's non
linear constrasts with models that have a linear response, such as
Anderson's and Kohonen's models (see sections 2.5 and 2.6).

Borrowing from thermodynamics, Hopfield defines the
energy E of his system to be

Neural Networks in Artificial Intelligence 59

E = j l T«V,Vj
ij.ixj

in the case where Tij=Tj i ’ that is, when you have symmetric
connections. The change in E based on a change in a single neuron's
state is

M = - U v , £ T ijV j

This is a monotonically decreasing function for the following
reason. A Vi can take on the values -1 (when it goes from 1 to 0) and
+1 (when it goes from 0 to 1). When Vi becomes 0, the summation
is negative, since

is negative. When it becomes 1, the summation is positive. AE is
therefore always positive, since it is either the product of two
negative or two positive numbers. The model will continue changing
state until it reaches a local minimum for E. Thus the model has
stable limit points.

Hopfield ran simulations of his model for 30 and 100 neurons,
using random initial states. This was done for the case where
Tij^Tji, that is, in the case in which the connections were non-
symmetric, to see if the stable limit points still existed. In most of
the cases the model would settle to one of two or three stable states;
occasionally it would oscillate between two states or roam around in
a small area in state space. Hopfield has a mathematical argument
for why stable states persist in the case of non-symmetric
connections; this is important for the biological validity of the
model, because asymmetric mutual connections often exist in the
brain. Some neuroscientists question the neural plausiblity of
Hopfield's model and of its extension to simulated annealing. (For
information on simulated annealing, see the next section; for a
critique, see section 2.19)

Hopfield discovered experimentally that his n neuron network
was capable of storing about 0.15 n states, before a severe
degradation in recall occurred. At 0.15 n, about half the states are

60 Neural Network Methods for Learning and Relaxation

recalled well, and half are recalled badly. It is necessary to reduce
the number of stored states to 0.05 n to get perfect recall.

Each of the stored states, as a limit point, "attracts" flows
from those states that are most similar to it, thus providing a
content-addressable (auto-associative) memory. If a given starting
state is intermediate between two or more of the stored states, a
choice must be made. The statistical behavior of this choice is such
that the probability of choosing one state or the other is related to
the similarity of the intermediate state to one or the other stored
state.

2.9. Modeling Neurons with Differential Equations
Hopfield and Tank (1986b) developed a sophisticated model of

neuronal firing rates in a network. Each cell i is characterized by a
capacitance C/ and a resistance /?/. These, together with the electric
current that is input to the cell, determine the input potential v. The
strength of a synaptic connection between two neurons, as in the
earlier binary model, is given by Tu ■ Hopfield and Tank derived the
following differential equation for the behavior of the cell potential
Ui over time:

These three terms are respectively due to input currents from
neurons that have synapses with the neuron in question, and input
current that is due to neurons that are external to the circuit in
question. This equation is still an approximation, but it is a closer
approximation to real neuron behavior than the two-state activation
model that Hopfield offered earlier (see the last section.)

Hopfield and Tank have applied their model to a variety of
optimization problems. An optimization problem is a problem for
which an optimal solution must be found, out of a (typically) large
set of possible solutions. Many problems can be stated as
optimization problems. For example, language understanding can be
viewed as the problem of assigning an optimal meaning to a
sentence; speech understanding can be thought of as trying to make
an optimal interpretation of a sound pattern as a series of words.
One of the classic optimization problems is the traveling salesman
problem, in which a salesman needs to visit a set of cities; the

Neural Networks in Artificial Intelligence 61

problem is to find the shortest tour that visits every city once,
returning to the starting city at the end. Hopfield and Tank have
devised a neuronal circuit to do this.

An n city tour is represented by an n by n matrix; each city
has a row in the matrix. Each of the n units that are in a given row
represent the n possible positions that the city can have in a tour.
Thus a solution corresponds to a single neuron being "on" (highly
activated) in each row, and the rest being "off'. The requirement
that only one city can be in a given position in a tour translates to
the rule that only one neuron in each column may be activated.
These two constraints are achieved by hooking up all the neurons in
each row and in each column as a winner-take-all network with
lateral inhibition between each pair of them.

A winner-take-all network is a network in which each node is
connected with inhibition to each other node in the network, as well
as receiving input or activation from outside. Generally, such a
network settles to a state in which only one node in the network is
activated and the rest are deactivated. In Hopfield and Tank’s
network, a unit's activation ranges between 0 and 1.

The distances between cities are put into the system by using
them as the weights between neurons along a possible tour path. For
instance, if neuron A2 represents city A in position 2 in the tour,
and B3 represents cityfi in position 3, then there is a connection
between these two neurons whose strength is set to the distance
between A and B. Since the smaller weights (distances) contribute
less to the energy function, and since the updating function tends to
minimize the energy function, the system will tend to find a solution
containing those units such that the sum of their weights is minimal.
Hopfield and Tank found that, in a 30 city problem, the network
found one of the best 107 solutions out of a total possible of about
1030, thus reducing the problem space by a factor of 1023 in a single
convergence. They point out that since the values of the units range
from 0 to 1, and that a unit's activation represents the certainty that
that unit participates in the solution (i.e. that a given city is in a
given position in the tour), the network can consider a large number
of possibilities simultaneously, instead of having to enumerate them
the way a standard serial computer would. Hopfield and Tank point
out that this property of having the unit activation be between 0 and
1 is similar to properties of systems built using the certainty factors
found in fuzzy logic and fuzzy set theory (Zadeh 1973), which has
been applied to artificial intelligence and psychology.

62 Neural Network Methods for Learning and Relaxation

Hopfield and Tank point out that their solution to the traveling
salesman problem and other optimization problems is an example of
"forward engineering"; that is, specifically devising a neural circuit
to handle a specific computational problem. They note that
neurobiology is generally a problem of reverse-engineering,
understanding circuits whose mode of functioning is unknown. They
point out that accumulating experience in designing circuits gives
one a set of principles to use when analyzing them. This experience
may lead one to discover the principles used by biological evolution.

Hopfield and Tank emphasize the immense time savings
involved in neural solutions to problems like the traveling salesman
problem. They have implemented their designs in hardware. They
note that a 30 city traveling salesman problem could be solved in
about 0.1 seconds in a biological network of their design, using
actual neurons, if it were possible to build such a network, whereas
a conventional serial microcomputer could do it, using a
conventional algorithm, in the same time, but would require 10^
more devices (transistors). An electronic implementation of their
algorithm would require only about 1 microsecond.

They have devised neural versions of algorithms for other
problems, including graph coloring, the Euclidian match problem,
and the transposition code problem (Hopfield & Tank 1985, 1986a).

Their work raises the following interesting question: does the
brain make use of special purpose neural structures for vision,
language processing, and speech processing, or does it adapt
structures that already exist by changing the strength of synaptic
connections? It is clear that in the case of the early visual system,
specialized connections exist, but the question as to what extent the
brain uses hard-wired, specialized circuits for other problems is
debatable. Clearly, people are able to learn new solutions to new
problems; how problems are represented in the brain, and how the
brain adapts solutions to them, are hard questions not directly
addressed by Hopfield and Tank's model.

2.10.Simulated Annealing in the Boltzmann Machine
The Boltzmann machine (Ackley, Hinton & Sejnowksi 1985),

like Hopfield's network, is a neural network with bi-directional links
between units so that two units that are connected have the same
weight on a connection in both directions. The units have binary

Neural Networks in Artificial Intelligence 63

states, and the goal of the system, like that of Hopfield, is to achieve
a minimum energy

^ wijsisj+̂ 0iSi
i<j i

where 0/ is a threshold. (They use a slightly different notation than
Hopfield: his Tij are their wij, his Ui are their 0/, and his Vi are
their si.) This energy function is a little more complex than
Hopfield's, since it includes the thresholds 0/. Each unit k can locally
calculate the difference in the energy between what it is if it is
activated (s£=l) and if it is not (sk=0); this is easily seen to be

AEk=£ wkisi-6k
i

Thus, if the unit turns itself "on" when its input (summation term in
the above equation) exceeds its threshold, then the energy is
minimized. This is equivalent to what Hopfield does, although he
does not include the thresholds in the energy function.

This deterministic algorithm was used by Hopfield, and it was
fine for his purpose, which was to recall an exemplar pattern from
an input pattern similar to it (or to recall a whole pattern from
part). The above network will converge to a local minimum, and
Hopfield uses the local minimum network states to store his
exemplars. This is no good, however, when you are using the
network to solve constraint-satisfying optimization problems; then
you want the network to find the global minimum state. Ackley and
his co-workers, following (Metropolis, Rosenbluth, Rosenbluth,
Teller & Teller, 1953) and (Kirkpatrick, Gelatt & Vecchi 1983) get
the network out of local minima by introducing noise. Instead of
having each unit turn itself on asynchronously if its input exceeds a
threshold, it turns itself on with a probability pk that is a function of
the energy gap AEk on the iteration k

Pkr-------------(l+e-AEk/T)

where T is a parameter that plays the same role in this system that
temperature plays in a thermodynamic system. This decision rule is
the same as that for a thermodynamic system in which each particle

64 Neural Network Methods for Learning and Relaxation

has two energy states. The reason why this system is of interest is
that it will find an equilibrium state (corresponding to a global
minimum) no matter what state it is started in. At high
temperatures it converges rapidly to a solution, but it does not
discriminate finely between different energy states; at low
temperatures convergence is slower, but it is able to make this fine
discrimination. One way to approach equilibrium quickly and
accurately is to start with the system at a high temperature, then
lower the temperature slowly. This is called simulated annealing,
because it is the computational analog of the physical process known
as annealing.

A VLSI chip that implements the Boltzmann machine is being
built by Alspector and Allen (1987). This will run simulations about
one million times faster than could be done by a VAX (Hinton
1987).

2.11.Learning Weights in the Boltzmann Machine
The Boltzmann machine, like Rumelhart and his co-workers'

back-propagation algorithm (see section 2 .12), solves the credit
assignment problem of assigning optimal weights to connections to
hidden units in a neural network. This problem is a classical one in
learning; it dates back to such work as that of Samuel (1963) on
checkers, in which a complex function was used to evaluate moves in
a game of checkers. If the move was successful, it was difficult to
determine which of the terms in the function should be given credit.
In terms of a neural network divided into hidden units, input units,
and output units, the credit assignment problem is simply that of
setting these weights so that the correct associations between input
and output are embodied in the network—that is, assigning credit
(or responsibility) to the hidden units.

Ackley and his co-workers' technique, which is a learning
algorithm, goes beyond simulated annealing alone. Simulated
annealing is not a learning algorithm, since it does not change the
weights. The following algorithm may be used to discover the
optimal weights.

In this scheme, a Boltzmann machine is divided into v visible
units and h hidden units. During training, the visible units are
clamped—their states are fixed—and the machine is allowed to settle
into equilibrium. Then another input is clamped. There are 2V
possible inputs, each with a certain probability of being chosen as

Neural Networks in Artificial Intelligence 65

the input. A Boltzmann machine is said to model its environment
(that is, this probability distribution of the set of inputs) if, when it
is left running freely (with no input—no units clamped), it achieves
the same probability distribution as its environment.

Information theory (and common sense) tells us that our
Boltzmann machine needs to have 0(2V) units to store the 2V
probabilities needed to specify the behavior of the environment.
Thus in general, the system will not model the environment
correctly if it contains less than 0(2V) units. If the environment
contains regularities (such as patterns with odd parity being
presented more frequently), the system can do better with less units.
In order to get the two probability distributions to match, it is
necessary to minimize a measure of the discrepancy between the
two. Such a measure is

G=£P(Va)ln(P(Va)/P'(Va))
a

where P(Va) is the probability of state Va in the environment, and
P ’(Va) is the probability of that state when the network is running
freely. G is zero when P'(Va)= P(Va) for all x, and is positive
otherwise. Ackley and his co-workers show that a rule that
minimizes G is

Awij=e(pij-p'ij)

The term Awij specifies the change in the weight between
units i and j; in order to change the probability distribution the
weights must be changed; the relaxation process only changes the
states of the neurons, pij is the probability that units i and j will
both be on in the clamped state, and p'ij is the probability that they
will both be on in the unclamped state, e is a constant, the learning
rate. Both of these probabilities can be estimated by observing the
network run. Note that though this formula minimizes G, each
connection can adjust its weight by observing locally available
information (the states of the units it connects). The parameters of
the learning process are e and the length of time over which pij and
p'ij are estimated. Errors in the estimation of the probabilities,
which are necessitated by the requirement of observing them over
finite lengths of time, can lead to short climbs in G.

66 Neural Network Methods for Learning and Relaxation

Instead of using the above formula for A wij, Ackley and his
co-workers often implemented the variation whereby w ij was
incremented by a fixed amount y if pij> p'ij, and decremented by y
otherwise. This gives the advantage of allowing the network to take
larger steps when the gradient surface is relatively flat, so that it can
proceed more quickly to the center of a wide trough in the surface.

One problem that Ackley and his co-workers applied this
learning algorithm to is the encoder problem. In this problem,
there are two sets of visible units, Vl and V2-, each composed of v
units. In each group there is a single unit turned on, so that the
visible units have a total of states. There also is a set of hidden
units H. Each group of visible units is completely connected to itself
and to H, but the two visible groups are not connected to one
another. The goal of the system is to have the two groups of visible
units agree on a code in the hidden units whereby they can
communicate their state to one another. There must be at least
log2v hidden units in order for this to work totally; for instance, a
2-bit binary number in the hidden units is sufficient to encode a 4-
bit unary number, which is what is being stored in the visible units.
There were v inputs to the system, in each of which one unit was
turned on in each of the two sets of visible units.

They ran instances of the encoder network with low values of
v. The first instance they ran was the case where v = 4, the 4-2-4
network. Each of four input vectors was presented to the system,
which was then brought to equilibrium using simulated annealing.
The co-occurence probabilities p ij and p ’ij were measured by
repeating this process with each input, and was repeated for many
cycles. As the network learned, it first built up winner-take-all
networks that reflected the fact that the only one unit in each set of
visible units was activated at a time.

The network then chose encodings of each 8-bit input as a 2-
bit hidden unit vector; often it first chose redundant encodings (that
is, two or more inputs had the same encoding), but it later learned
unique encodings. If three hidden units are provided, it quickly
finds 4 unique encodings of the input, and then runs for some time
longer as it spreads the inputs out optimally (in terms of their
encodings). In their simulation of an 8-3-8 machine, it found 8
encodings in 16 out of 20 trials and 7 encodings in the other four
trials. It took over ten times as long as the 4-2-4 case to find the
unique encodings, apparently because the weight space is much

Neural Networks in Artificial Intelligence 67

larger. They also ran a 40-10-40 encoder, which achieved 98.6%
correct performance in retrieving encodings, after learning. The
ten hidden units were more than the log240 = 6 units required.

Ackley and his co-workers note that their learning algorithm
represents a way in which the distributed representations of concepts
may be learned; the encoder problem illustrates this. They also note
that the encoder problem illustrates a way in which concepts can be
communicated between different parts of a connectionist system.

2.12.Error Back-Propagation
Rumelhart, Hinton, and Williams (1986d), developed a

method, error back-propagation, or more simply, back-propagation,
for learning associations between input and output patterns using
more than than the two layers of Rosenblatt's original perceptron.
Similar methods were developed independently by Parker (1985), Le
Cun (1987), and Werbos (1974). Error back-propagation is a
procedure, like Ackley and his co-workers' learning algorithm (see
the last section) for learning optimal weights and thus solving the
credit assignment problem. They note that Minsky and Papert, in
their book Perceptrons (1969), pointed out the limitations of the
two-layer perceptron, in that there were some functions from input
to output that such devices could not compute. The solution to this
problem is the insertion of hidden units intermediate between the
input and output units, as in Figure 2.4. These are the "internal
representations" that the authors speak of in their paper.

A classic example of a function that cannot be computed by a
perceptron without hidden units is the exclusive-or (xor) logical
operation. This cannot be computed with only two binary-valued
input units and one output unit: rather, an additional (hidden) unit
must be placed between the input and output that detects the
conjunction of the two input units. The resultant network is shown in
Figure 2.5.

Back-propagation is a supervised learning technique that
compares the responses of the output units to the desired response,
and readjust the weights in the network so that the next time that the
same input is presented to the network, the network's response will
be closer to the desired response.

Back-propagation is also called the generalized delta rule
because it is a generalization of the original two-layer perceptron
convergence procedure introduced by Rosenblatt (see section 2.4),

68 Neural Network Methods for Learning and Relaxation

specifically, the version developed by Widrow and Hoff (1960),
which Rumelhart and his co-workers call the delta rule. (See also
section 2.12).

(M J Output Unit

+ 1/ - 2I \ + i
/ jL \ Hidden Unit

/ M5J \

Input Units T

Figures 2.4 (left) and 2.5(right). Fig. 2.4: A three layer perceptron. The bottom
layer is the input layer, the middle layer is the hidden layer, and the top layer is the
output layer. There may be different amounts of units in each layer. Activation
flows upward. Fig. 2.5: A network for computing the exclusive-or function from
Rumelhart et al. (1986d). Reprinted by permission

The delta rule is as follows: If the network is presented with
input pattern p, let the response of the network on output unit j be
Opj If the desired target output is tpj, then the difference is given by
dpj=tpj'°pj- If the ith unit of the input pattern has input Ipi, then the
change in the weight connecting units i in the input with j in the
output is given by

DpWji=zdpjIp i

where z is some constant. This formula is applied iteratively, and
may cause a convergence of the actual and target output.

The generalized delta rule was developed in the context of a
layered, feed-forward network that has units with a semi-linear
activation function. To review, a layered feed-forward network is
one in which there are distinct layers of units; the input is the lowest
layer, and the output is the highest, and all activation flows from
lower to higher units. A semi-linear activation function is defined
for their purposes as one that is a non-decreasing function of input

Neural Networks in Artificial Intelligence 69

that is differentiable everywhere. Thus a sigmoid activation function
such as that typically used to model neuron response qualifies as
semi-linear; a binary threshold does not, because it is not
differentiable at the threshold point.

The form of the generalized delta rule is the same as that of
the regular delta rule. For unit i whose output is 0 /, the change in
the weight connecting it to a unit j to which it outputs is
ApWji=kdpjOpi. The generalized delta rule's error signal dpj differs
from the standard error signal. If unit j is an output unit, then

^pj-^pj'Opfifj(mtpj)

This formula is the same as before, except for the addition of the
term fj(ne tp j) . This is the derivative of the activation function,
evaluated at netpj, which is the net input that unit j is receiving, (see
the next section for a description of f(netpj)). Thus this term
represents the rate of increase in the input that unit j is receiving.

In the case where j is not an output unit, the error signal is a
function of the error signals of units that it is connected to, higher up
in the network. This is the origin of the term back-propagation. The
errors on the connections from the top level of hidden units to the
output units are computed directly with the above formula. Then the
errors in the connections from units in layers below the top two
layers (the top hidden layer and the output layer) that are connected
to the top two layers are computed in terms of the errors on the
connections between the top two layers, and so on. Thus, while
activation in the network propagates forward (upward), when
computing the output, errors propagate backward, in order to adjust
the weights. The error in a connection that is below the top is given
by:

dpi=f j (netpj) X dpkwk-
k

where k ranges over all the units that unit j outputs to. Thus the
error for a hidden unit is the weighted sum of the errors in the units
that that hidden unit outputs to, multiplied by the rate at which the
input to that hidden unit is changing.

Rumelhart and his co-workers have shown that the delta rule
minimizes the total sum squared error (between the target and actual
output) in the case of units with a linear activation rule. If you have

70 Neural Network Methods for Learning and Relaxation

n output units, the weights connecting them with the input units form
a n -dimensional space. If the error is assigned an additional
dimension, making a n+1 dimensional space in this conceptualization,
then it is a "hyper-surface" in the space. Rumelhart et al. have shown
that the delta rule finds a minimum value for the error in this
surface, and thus always sends the error plummeting most steeply,
which they call steepest gradient descent.

The error surface can be visualized as a hilly landscape. Each
point on its surface corresponds to a particular set of values for the
weights in the network; the height at that point corresponds to the
error. Steepest gradient descent means that, wherever you are on the
surface, you always go in the steepest direction toward the valley. Of
course, this only guarantees that the algorithm will find the nearest
valley (local minimum) from where you happen to be on the error
surface; it will not necessarily find a global minimum in the error.

The generalized delta rule was derived based on the desire that
it have this behavior, steepest gradient descent. Taking this as an
assumption, Rumelhart and his co-workers were able to derive the
above formulas for back-propagation.

Hinton (1987) has observed that back-propagation typically
learns in what appears to be O(N^) steps on a conventional serial
machine, where N is the number of connections in the network. This
would be reduced to O(N^) on a parallel machine with one processor
per connection.

2.13.Applications of Back-propagation
Having developed the rule, they proceeded to apply it to a

variety of problems. For their simulations, they used the sigmoid
semi-linear activation rule

Opj=-------------------------- - = f & w ijOpi+ Qj)=f(netpj)
(l + e & wiPpi+^) i

They used a constant £ in their weight change rule that was small
enough to avoid sharp changes in the error surface that would throw
off the gradient descent.

They used the network shown in Figure 2.5 for solving the
exclusive-or (xor) problem. They solved it hundreds of times using
different random initial weights, and the network settled into a
solution state except in two cases, in which it found a local minimum

Neural Networks in Artificial Intelligence 71

in error space. They also solved it using different network
topologies; for example, with a network with two hidden units
instead of one.

They also used back-
propagation to solve the
parity problem, that is,
determining whether an even
or odd number of input units
are activated. Like the
exclusive-or problem (which
is a special case of the parity
problem), this is a problem
that Minsky and Papert
(1969) showed that a two-
layer perceptron could not
handle. Rumelhart and his
co-workers handle it by
using a th ree -lay er
perceptron with an equal number of input and hidden units and a
single output unit (see Figure 2.6). They trained this network to
respond correctly.
2.14. Learning Family Relationships

Hinton (1986) gave an interesting example of how concepts
can come to be embodied in distributed representations using back-
propagation, and how this leads to automatic generalization when
inputs are given that are novel, that is, not included in the training
set. The knowledge domain used by Hinton is that of family trees;
the relationship between any two people in a family tree can be
represented by a triple: (personl relationship person2).

The five-layer feed-forward network that Hinton devised had
two sets of input units, for the first two items in the above triple
respectively. There are 24 input units for (personl), locally encoding
the 24 possible people. There are 12 input units representing the 12
possible relationships. These 36 units comprise the first layer Each
of these input units is connected to its own set of 6 units in the second
layer, which learn distributed representations of the input. Each unit
in both sets of 6 is connected to all of the 12 units in layer 3, which
are in turn completely connected to 6 units in layer 4. Finally, all
the units in layer 4 are connected to a layer of 24 output units in
layer 5 representing the third item in the triple (person2). The only

Figure 2.6. A network for computing the
parity problem from Rumelhart et al.
(1986d). Reprinted by permission.

72 Neural Network Methods for Learning and Relaxation

place that this feed-forward network is not completely connected is
in the connections between layers 1 and 2 .

Thus the network functions as a triple completion machine.
Hinton used the two family trees shown in Figure 2.7; these contain
104 relationships, of which 100 were used for training with back-
propagation. After 1500 sweeps through the 100 training instances,
the network performed correctly on all of them, with correct
performance defined as the correct output unit having an activation
of greater than 0.8 (out of 1.0) and all of the rest of the output units
having an activation of less than 0 .2.

Christopher = Penelope Andrew = Christine

Margaret = Arthur Victoria = James Jennifer = Charles

I ' I
Colin Charlotte

Roberto = Maria Pierro = Francesca

Gina = Emilio Lucia = Marco Angela = Tomaso

Alfonso Sophia

Figure 2.7. Family trees used by Hinton (1986). Reprinted by permission.

Some aspects of the distributed representations learned in the
hidden units are particularly interesting. Unit 1 in the hidden units
in layer 2 representing personl encodes nationality. Unit 2 encodes
what generation in the family tree personl belongs. Unit 4 encodes
the branch of the family tree the person belongs to. Unit 1 in the six
hidden units in layer 2 encoding the relationship encodes the sex of
person2; it is encoded here because the relationship (e.g., brother,
mother) also describes the sex of person2. There was no need to
encode the sex of personl because this placed no constraints on the
identity of person2, given the set of relationships used.

The isomorphism between the two family trees led to an
economy of representation. The two items occupying the same slot
in their respective family trees had a similar representation, except
for the one unit encoding the English/Italian distinction.

Generalization was tested using the four relationships that
were not used in the training. The training was repeated twice, using

Neural Networks in Artificial Intelligence 73

different initial random weights. In one of these cases, it got all four
novel stimuli correct; in the other it got three out of four correct.
Here, out of necessity, the criterion for what is correct was relaxed
somewhat; a correct response entailed activation of over 0.5 on the
correct output unit and less than 0.5 on the remaining units.

2.15. Competitive Learning
Competitive Learning is a mechanism in which units in higher

layers in a connectionist network compete to recognize features in an
input layer. It is a type of unsupervised learning, since no
information is presented other than the input data to help a
competitive learning algorithm to form features. Many versions of
competitive learning exist: we discuss a few: the version of
Rumelhart and Zipser, that of Carpenter and Grossberg, and that of
Kohonen. Others include the work of Von der Malsburg (1973),
Fukushima (1975), and Amari (1983). We then turn to the Neuronal
Group Selection theory of Reeke and Edelman, which is an
competitive learning theory of the brain.

2.16. Competitive Learning Using
Feed-forward Networks

Rumelhart and Zipser (1985) studied one form of competitive
learning. The type of competitive learning networks studied by
Rumelhart and Zipser are feed-forward, with an input layer and one
of more feature-recognition layers.

Nodes in each of the feature-recognition layers are grouped
into clusters, and each unit in a cluster inhibits all the others,
resulting in a winner-take-all situation within the cluster, whereby
one unit becomes activated at the expense of all the rest. Each unit in
the cluster receives input from the same set of units in the layer(s)
below, but has different weights on these connections, resulting in
different activation. The weights of only the winning unit are
adjusted. In the version they studied, the weights coming into a unit
summed to one.

For simplicity's sake, let us consider a two-layer system of
input units and inhibitory clusters. The connection to a unit j in one
of the clusters from a unit i in the input layer are weighted by wij
The activation received by a unit equals

74 Neural Network Methods for Learning and Relaxation

X Wifi
i

where ci is the activation of input unit i. In Rumelhart and Zipser's
model, all the c/'s are binary. The activation of the units in a cluster
range between zero and one; after winner-takes-all competition
within each cluster has taken place, the activations in the clusters are
also binary—one unit in each cluster has value one and the rest are
zero. The wij' s for the unit that wins are then adjusted according to
the following rule:

Awij=g(^-wij)

where g is a constant (the learning rate), cik is the ith component of
the stimulus k, and nk is the total number of input units that are
activated in the stimulus k. Thus, on each iteration of the learning
process, the vector of weights moves closer to a normalized version
of the input presented in that learning cycle. If all the inputs were
the same, say the constant vector c, the vector of weights of the
winning unit would come to be equal to clnO, where nO is the
number of ones in c. If all the inputs are not the same, individual
units would come to be responsive to clusters of similar inputs, with
the weights representing an input in the center of each cluster, in a
similar manner to the self-organizing maps of Kohonen (see section
2.18)

Rumelhart and Zipser trained such a network to respond to
adjacent dipole stimuli on a 4x4 grid; that is, each dipole stimulus
was composed of two active nodes on the input grid, which were
vertically or horizontally adjacent. They first connected each of the
16 input units to an inhibitory cluster of size two. Learning caused
one of these units to become more responsive to activation on half
the grid, and the other to be more responsive to the other half. The
grid was divided in such a way horizontally, vertically, or
(occasionally) diagonally, depending on the initial configuration of
the weights, which was random. Thus the network detected the
locality in the input.

The inhibitory cluster's size was then increased to four units.
After one convergence, the input grid was partitioned into four
regions, each of which had a maximally responsive unit, three of

Neural Networks in Artificial Intelligence 75

which were 2x2 squares and one of which was divided into two
pieces (see Figure 2.8). When a stimulus bordered two regions, it
was classified into one or the other region. More units would
classify the stimuli even more locally, up to a limit of 24 units, each
of which would respond to one of the 24 possible dipole stimuli on
this grid.

The next experiments
in competitive learning that
Rumelhart and Zipser
conducted involved letter and
word recognition. They used
a 7x14 grid to present two
letters to the system; each
letter was contained in a 7x5
section of the grid, with two
blank columns to the right of
each letter. They used the
letters A, B, C, D, E, and S
as stimuli. The specific
experiments, stimuli, and
output cluster descriptions
are given below.

Since these letters only
sparsely occupied the grid, as
they are hollow, so some
units are rarely or never
activated, there is the
possibility that some of the
units in the output Figure 2.8. The 4 by 4 grid of input units
classification cluster will used by Rumelhart and Zipser (1986) marked
never win. They suggest two by four symbols (0,X,black square, white
solutions for this problem, square) according to which of 4 units in an
The first changes the learning inhibitory cluster responded most to that each
rule S O that it is "leaky", SO input unit. The numbers measure how long
that both the winning unit and the system has learned. Reprinted by
all the losing units have their permission.
weight vectors moved toward the input vector, but the winner is
moved faster—Rumelhart and Zipser moved it an order of
magnitude faster. This moves all units into regions into which they
can eventually win. The other idea, due to Bienenstock, Cooper, and
Munro (1982), is to associate with each unit an additional number,

76 Neural Network Methods for Learning and Relaxation

called its sensitivity, which becomes a multiplicative factor in the
formula for its activation. The sensitivity is based on the number of
inputs that a unit wins on; it increases its sensitivity when it fails to
win, and decreases it when it wins. By this mechanism, every unit
can come to win and thereby move closer to some cluster of inputs.
Rumelhart and Zipser used both techniques; which one was used
mattered little, they found.

Rumelhart and Zipser's first experiment presented four pairs
of letters, AA, AB, BA, and BB; their output was composed of an
inhibitory cluster of two units. In some cases, one unit responded to
A A and AB, and the other to BA and BB; in the others, one unit
responded to AA and BA, and the other to AB and BB. By
examination of the weights, it was clear that in the former case, one
unit responded to A in position 1, and the other unit responded to B
in position 1; in the latter case, the same responses were found with
respect to position 2. Each unit had similar connections to the
position to which the two units were not responding. When the
number of units in the inhibitory cluster was raised to four, one unit
responded to each of the four patterns. Thus the same competitive
learning mechanism can be used for both position-specific letter
detectors and word detectors.

Next, Rumelhart and Zipser changed the stimulus patterns to
AA, AB, AC, AD, BA, BB, BC, and BD. With two units in a
cluster, they always became sensitive to the letter in the first
position, because there were two possibilities there; with 4 units,
each unit responded to one of the four possible values in the second
position.

They demonstrated the ability of their network to classify
stimuli by presenting the letters A, B, S, E to an inhibitory cluster of
two units. The cluster correctly classified B with S and E with A;
each element in each of these pairs is quite similar to the other, in
terms of the patterns that they used. They then presented the patterns
AA, BA, SB, EB to an inhibitory cluster of size two. As before, the
cluster became a detector of which letter was found in position two,
but the units also responded to the E or S in position one. One unit
responded to a B in the second position and an E or S in the first; the
other unit responded to an A in the second position and an A or B in
the first. Thus the units come to respond to all the clustering
information available in the input, even though it was redundant.

Rumelhart and Zipser's final experiment attempted to get the
units in a cluster to respond to vertical and horizontal lines. They

Neural Networks in Artificial Intelligence 77

used a 6x6 grid, and presented as input the 12 possible vertical and
horizontal lines of length 6. The trouble with recognizing horizontal
vs. vertical in a single perceptron output layer is that every output
unit participates in both a horizontal and a vertical line. They had
hoped that each of the two units in an output cluster would respond
to parallel bands of vertical or horizontal activation. Unfortunately,
the system failed to classify the inputs in this way. Instead, each of
two units responded to half of the vertical and horizontal lines. One
unit responded to the vertical and horizontal lines that intersected the
lower right quadrant of the input grid, and the other unit responded
to those that intersected the upper left quadrant. The units clustered
inputs in this fashion because clustering in this form of competitive
learning is based on overlap in input patterns, and none of the
vertical stripes overlap with one another, and neither do the
horizontal stripes.

Rumelhart and Zipser forced the system to recognize the
horizontal/vertical distinction by adding additional input units. In the
case of the horizontal stripes, a static horizontal stripe in the
additional units was added to each input. The same was done with
the vertical stripes; in this case, a static vertical stripe was added.
This fixed the problem, but there was nothing about the original
classes of stimuli themselves that caused the system to distinguish
them, other than the fact that two distinct static teaching patterns had
been added, one of which was associated with each class. The fact
that the static teaching patterns happened to be stripes and matched
the rest of the input was irrelevant.

To approach the learning of the horizontal/vertical distinction
in another way, they also built a three-layer system which had a
middle layer of two clusters of four units each right above the input
layer, and a top layer of a cluster of two units, each of which was
connected to the eight units below it. Each of the four units in a
cluster in the middle layer came to respond to either half the
horizontal stripes, or half the vertical ones. The units in each cluster
usually came to recognize different sets though, which gave the units
in the top cluster enough information to perform the
vertical/horizontal classification.

The vertical/horizontal distinction is an example of a
classification that is not linearly separable. This means that there is
no weight vector that, when the dot product between it and an input
vector is taken, can determine by the value of the dot product what

78 Neural Network Methods for Learning and Relaxation

the classification of the input should be. A competitive learning
system involving three or more layers often solves this problem.

2.17. Competitive Learning using
Adaptive Resonance Theory

Carpenter and Grossberg (1987) propose a network that does
competitive learning (self-organization) based on Grossberg's
Adaptive Resonance Theory (ART) (1976). This network is
sensitive to novel stimuli, as people are. Their system is divided into
two subsystems; an attentional subsystem, which processes familiar
stimuli, and an orienting subsystem that detects unfamiliar input
patterns, and resets the attentional subsystem when it detects such a
pattern. The network as a whole forms its own clusters of patterns,
and thus acts as an unsupervised classifier.

Their system uses "self-scaling" units. This is needed because
a feature that is "necessary" in one pattern may be superfluous or
noise in another. The self-scaling property of units is the ability for
them to recognize that in different types of patterns there may be a
different number of critical features. This is quantified by a
parameter called the vigilance level.

When familiar patterns are encountered, little settling of the
network occurs and the system functions like a look-up table, quickly
finding the (network-created) category for that familiar pattern.
The environment can also act as a teacher; the network learns to
respond to the differing precision of a category's definition by
automatically detecting statistical properties of categories. Thus, if
the examples are all very similar, any new example would have to be
just as similar in order to be classed in the same category. If the
category is looser, so is classification. This is designed to reflect
human performance (Posner 1973); people pay attention to detail if
it is necessary. If the system receives negative reinforcement from
the environment, it will become more discriminating in its judgment,
for the category in which a misclassification has occurred.

Their system, shown in Figure 2.9, is layered. The input /,
which may be preprocessed in some way, becomes an activation
pattern X across a set of nodes in layer 1, FI. Nodes in FI are
linked to nodes in the next layer up, F2, by connections that have
corresponding nodes in long-term memory (LTM). The signal
received at a node in F2 is the product of the node value in FI and
the value in LTM; the LTM value is said to gate the FI value

Neural Networks in Artificial Intelligence 79

(functioning in a manner similar to a weight). Each node in F2 adds
up all the information that it receives along all the gated connections
that it has with nodes in FI to create a pattern Y in F2. FI and F2
together are the system's short-term memory (STM). The nodes in
F2 interact with each other to get further contrast enhancement, that
is, to separate the input patterns from each other in terms of the
response in F2. The other parts of Figure 2.9 will be explained
below.

One method of doing
this contrast enhancement is
by a process whereby the
nodes in F2 become a
winner-take-all clique (as in
the competitive learning
scheme of Rumelhart and
Zipser), but in general, more
than one node in F2 can be
active at once. A winner-
take-all clique in F2 can
function as a classifier. The
gated connections between FI FiSure 2 9■ The network of Carpenter and
and F2 are called the Grossberg (1987). Reprinted by permission.
"adaptive filter" by Carpenter and Grossberg.

After FI activates F2 to create Y, F2 gives feedback to FI via
another adaptive filter, also gated by LTM. This creates a new
(modified) activation pattern across FI, X * . I f X* differs
significantly from X, this attenuates the initial activity in FI, and a
subsystem, called the orienting subsystem detects this attenuation, and
sends a burst of inhibition to all the active nodes in F2, which lasts
for some time. The purpose of the orienting subsystem is to create
novel responses to novel stimuli.

X * thereby disappears and X is reinstated by /, thereby
precluding further (immediate) bursts of inhibition from the
orienting subsystem. The system then attempts to create a new
pattern Y' in F2, which cannot be the same as Y, because the active
nodes in Y continue to be inhibited for some time. The system
continues to search for the right pattern in F2 until it finds a pattern
whose top-down activation to FI does not produce a significant
attenuation in FI, which would reactivate the orienting subsystem.

ATTENTIONAL ORIENTING
SUBSYSTEM SUBSYSTEM

GAIN
CONTROL DIPOLE FIELD

STM F2I™"H▲ LTMr I4
LTM t+

GAIN
STM F,

CONTROL A++!L.
STM
RESET
.WAVE

+

INPUT
PATTERN

80 Neural Network Methods for Learning and Relaxation

The orienting subsystem responds to novel stimuli because only
novel stimuli will produce attenuations in FI.

Two additional concepts apply to the attentional mechanism of
the system; attentional priming and attentional gain control.
Attentional priming occurs when top-down feedback to F2 creates a
pattern in FI before the input has a chance to affect the FI nodes.
An expectation is thereby created in the FI nodes. The attentional
gain control controls the degree to which FI responds to top-down
versus bottom-up input, thus allowing the system to respond
differently to the two situations.

Carpenter and Grossberg use what they call the 2/3 rule to
determine whether or not the FI units produce output. In order for
them to produce output, 2 out of the 3 sources for input to FI must
be active: these are the input pattern, feedback from above, and the
attentional gain control. Since only the presence of an input pattern
can trigger the attentional gain control, the 2/3 rule guarantees that
only input from stimuli allows the FI neurons to fire. The 2/3 rule
is necessary to maintain consistent pattern classification over time;
without the rule a pattern A may become classified by the
responsiveness of F2 node q and later by a different F2 node r.

Carpenter and Grossberg note that, at a fixed vigilance level,
their system may classify two stimuli A and B differently and C & D
the same, even if A differs from B on exactly the same features on
which C differs from D. If the system has been initially trained with
a vigilance level that allows it to distinguish A from B, it will not
distinguish C from D in its classification if C and D have more
features than A and B. This behavior, Carpenter and Grossberg
point out, is akin to "attentional focusing" in people; that is,
discrepancies are less noticed if they are a smaller proportion of the
total pattern being paid attention to; when you "zoom in" on part of a
pattern, discrepancies become more apparent.

They note that the vigilance level is directly related to the
number of categories that the input patterns are classified into. For
instance, they classified bit patterns representing letters using their
algorithm. With a vigilance threshold of 0.5, the system classified
the 20 letter patterns presented into four groups; with a threshold of
0.8, it classified them into nine groups. The critical patterns that
were stored as top-down weights in the system were significantly
different in the two cases, being more specific in the latter case. If
the vigilance level is set high enough, each letter would be classified
into its own (singleton) set. Thus the total resource requirements of

Neural Networks in Artificial Intelligence 81

the system is a function of the vigilance level and the total number of
input patterns.

The response of units in Carpenter and Grossberg's system is
described by non-linear differential equations; Lippmann (1987) has
shown them to be equivalent to the following simpler mathematical
formalism; I borrow his notation.

There are n input units (FI) and n output units (F2). There
are top-down and bottom-up connections between each input unit i
and each output unit j, the weights of which are denoted by tij and bij
respectively. These connections comprise what Carpenter and
Grossberg call the adaptive filters. All the ti are set to 1 initially,
and all the bij to lln. Binary input is applied to FI and each unit in
F2 computes its activation mj as follows:

mj = X b ij(Oxi
i

where xi is the input applied to the input units. In this example, a
winner-take-all network is used, so that only the largest unit is
selected to be activated. The sum of the activation in FI:

n = Z x>
i

is compared to the sum weighted by the top-down connections

IT-Xf=£ tijXj
i

If /T-X/IX is greater than a vigilance threshold p, this signals a
misclassification. The output unit that formerly responded to the F
pattern is disabled, and a new output unit wins the competition. This
is repeated when the vigilance threshold is not exceeded, and another
output unit that corresponds to the current classification has been
chosen. The system then integrates this information by changing its
weights in the following manner, if j* is the correct output node

tij*’=Xitij* for all i

82 Neural Network Methods for Learning and Relaxation

bij* ' = — -------- f o r a n i

i Z

where the bottom-up connections are normalized so that the average
activation received by an output node will not exceed one in
magnitude. Over time, the top-down and the bottom-up connections
to an output node come to represent an average of all the examples
that have been successfully classified using that output node. The
vigilance threshold controls the dispersion of the examples in a
category. Carpenter and Grossberg allow negative reinforcement to
change the value of the vigilance threshold to allow the system to
respond differently to categories of differing "fuzziness".

2.18. Kohonen's Self-organizing Topological Maps
Kohonen's (1988) model of self-organization is based on the

idea that the brain tends to compress and organize sensory data
spontaneously. Self-organization is Kohonen’s term for unsupervised
learning. He starts with the observation that neural networks in the
brain tend to consist of layers of neurons, which obey the "Mexican
Hat" function; that is, units strongly excite those units nearby them,
and inhibit those not so near (see Figure 2.10). He uses networks
with large numbers of lateral connections to implement this, and a
sigmoid activation function for his units. These types of networks
tend to contain "clusters of activation". If there is more lateral
inhibition, clusters tend to be smaller; if there is more excitation,
they tend to be bigger

The purpose of
Kohonen's self-organizing
mappings is that patterns of
high dimension (i.e., long
vectors) are transformed into
one or two-dimensional
patterns, such as the two-
dimensional clusters just
described. For example, in a
situation where input units Figure 2.10. The "Mexican Hat" function of
are m apped onto Kohonen (1988). Reprinted by permission,
corresponding output units, a self-organizing system would give a
localized response—that is, a single output unit responding most,

Interaction

Neural Networks in Artificial Intelligence 83

with activation falling off in the units around it, for each input
pattern provided.

He defines a topology-preserving mapping onto a one
dimensional set of output units as one that reproduces some ordering
that is placed on the input patterns. For instance, if the input
patterns are ordered as (xi, X2 , ...rXn) a topology-preserving
mapping (e.g., state of the internal weights of the system) is one in
which unit o\ is most active when pattern xi is presented, unit 02 is
most active when X2 is presented, etc., where the o's are the output
units. Thus the spatial relations of the output units reflect the
ordering of the input patterns. Kohonen notes that this can be
thought of as a projection of the original high dimensional vector
onto a linear scale.

If this is extended to two or more dimensions, the
mathematics that describes what is topology preserving becomes
more complex, but the intuition of a projection still holds. For
instance, if the various input points are, as vectors, distributed on a
curving, twisted surface, they will be mapped onto units on a flat
plane. Distances between points will not be preserved but their
topology will—that is, input vectors that were adjacent to each other
will still be adjacent to each other: more strictly, if B is between A
and C, this will be the case after the mapping as well.

Kohonen gives the example of a two-dimensional self
organizing system, that is a two-dimensional rectangular or
hexagonal lattice, in which each unit in the grid receives input from
each input unit, and forms a function of the weighted sum of these
inputs, in which the weights are adaptive. The purpose of Kohonen's
system is to evolve localized response patterns to input vectors. If
two input vectors are similar, they evoke similar localized response
patterns.

The way this is accomplished is as follows: each output unit
has a vector of weights which connects it with the input units. These
weight vectors are initially random. At each time step, the dot
product of the weight vector of each unit with the current input
vector is formed:

Oj=X wik*k
i

84 Neural Network Methods for Learning and Relaxation

where xk is the kth component of the input vector,oj is the
activation of the ,/th output unit, and the wik are the weights
connecting them.

After the activation of each output unit is computed, the
output unit with the maximum activation level is selected. This is
the unit whose weight vector is most similar to the input vector.
This weight vector is then adjusted to be even more similar to the
input vector by the rule

Ao(tk+i)= a (tt)(x(tk)-o(tk))

in which x and o are the input and output vectors respectively, a is
the learning rate, Ao is the change in o, and tk and tk+1 are the kih
and (&+7)st time step respectively. This is a version of the
perceptron convergence rule (see section 2.4), and is similar to the
competitive learning scheme of Rumelhart and Zipser (see the last
section.)

At each time step this rule is applied to the maximally
responding unit and to all the units within a certain distance d of this
unit. The fact that that the rule is applied to nearby units is what
leads to the topology-preserving properties of the mapping, and
distinguishes it from the competitive learning schemes discussed in
the previous two sections. As the learning proceeds, d is decreased,
as is the learning parameter a. Relatively high values of these two
parameters allow areas of units to quickly respond to different types
of input patterns, whereas "fine structure" aspects of the topology of
a set of input vectors are worked out in the later stages of the
learning, as d and a decrease.

An example of a self-organizing system that Kohonen gives is
one in which the output units come to recognize ranges of signal
frequency; adjacent output units recognize adjacent ranges. The
input units are resonators that each respond to an initially random
(but then fixed, for each resonator) range of frequency. Each of
these input units is randomly connected to a set of output units.
When the system is trained on an input set of randomly chosen
frequencies, using the protocol for a self-organizing system given
above, the first output unit comes to recognize the highest
frequencies in the input range, the next a slightly lower value.

Kohonen gives two examples of systems that capture a
hierarchical set relationship between input elements in a topological
map. In his first example there are 32 symbols each represented by

Neural Networks in Artificial Intelligence 85

a sequence of five octal digits,
which code hierarchical
relationships For example, if
symbol C is represented by
30000, F by 31000 and G by
32000, F and G are viewed as
more specific versions of C.
The complete code is shown in
Figure 2.11, and the result of
a hierarchical clustering
analysis is shown in Figure
2.12. When the self
organizing algorithm using the codes as training data was run using
a two-dimensional hexagonal array of output units, the result shown
in Figure 2.13 was obtained. Here, for each symbol, the unit
responding maximally to it is shown. One can see that the
topological map duplicates the information given by the hierarchical
clustering process, although the straight lines in Figure 2.12 are
deformed in Figure 2.13. Nevertheless, all the topological
clustering information is present.

The second example of classification in a two-dimensional
array is given by a system that came to recognize and cluster natural
phonemic data. After training on this data—sampled at 15 different
frequency values—the system arrived at the map given in Figure
2.14. This map shows similarity relations between phonemes, based
on the metric used by the system, which was the scalar product,
taken between two phoneme input patterns. In Figure 2.15, the
phoneme to which each unit responded maximally is shown. As
expected, clusters are apparent.

Item

Char. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 1 2 3 4 5 6

<, 1 2 3 4 5 3
{j 0 0 0 0 0 1 2 3 4 5 3
() 0 0 0 0 0 0 0 0 0 0 1 2 3 4 3 6 7 8 3 3 3 3 6 6 6 6 6 6 6 6 6 6
(« 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 1 2 3 4 2 2 2 2 2 2
{} 0 1 2 3 4 S 6

Figure 2.11. An Encoding of 32 sysmbols by 5 octal digits. From Kohonen
(1988). Reprinted by Permission.

Figure 2.12. The result of a hierarchical
clustering analysis of the code given in Fig.
2.11. From Kohonen (1988). Reprinted by
Permission.

86 Neural Network Methods for Learning and Relaxation

s * * *
* * * * & V; 0 e * I

v * * * r y * * * *

d * n * * * m * * s

o o a a aesae e e e
u o a a & c a e i i

u u h h r o o e i i
v v v r r o y j i i

v v d r r y y £ j i
n v n d n ri rn ri s s

n n n n n m m m m s

B C 0 E * Q R * Y Z
A * * * * p * * X *
* F * N 0 * W* * 1

H K L * T U * 3 * ** I * * * * * * 4 *
* j * S * * V * 5 6

Figures 2.13-2.15. Topological maps formed by a self-organizing algorithm. From
Kohonen (1988). Reprinted by Permission.

2.19. A Population Biology
Approach to Connectionism

Reeke and Edelman (1988) criticize approaches to
connectionism that are inspired by physical systems, such as those
given by Hopfield, and by Ackley and his co-workers (see sections
2.8 and 2.10). Although these approaches take their inspiration from
biology insofar as they attempt to use realistic model neurons and
use brain-like terminology, they are not modeling anything that is
really present in the brain, according to Reeke and Edelman. To
quote, "in the attempt to find regularity in biological systems, many
features have been introduced into their simulation in connectionist
system that are quite unbiological."

Reeke and Edelman take issue with the idea that the organism
is simply a vessel for information already structured in its
environment instead of a creator of information, which it
synthesizes by applying criteria to its environment. They note that
each individual must construct his or her own categories. In other
words, they are advocating a model of the mind as an unsupervised
learner in which much of the clustering of stimuli into classes is not
readily inherent in the stimuli.

They note that the nervous system is composed of distinct
areas, and each area has a distinct pattern of connectivity and is
specialized for a different task. Different sub-networks interact and
exchange information, building up more complex functions, which
none of them could compute on their own. They note that regions
seem to have been gradually added to the brain over the course of
evolution, adding additional functions while coordinating their work
with older sections. The brain is asynchronous; that is, events in
different parts of the brain are not synchronized with one another.
No one neuron is essential for the operation of a given network, and

Neural Networks in Artificial Intelligence 87

there are typically many paths connecting any two neurons that are
connected at all. Apparently patterns of activation are what is
important in the brain, not local activations of individual neurons.
Thus representations are distributed.

One factor that Reeke and Edelman emphasize that seems to
have been left out of most discussions of connectionism is the
diversity of neuronal populations. This diversity takes two main
forms. First of all, because of stochastic variation in development,
genetically identical animals—twins—have different numbers of
neurons and they are arranged differently. Even corresponding
individual neurons differ from one another. They note that it is
easily calculated that the human DNA does not contain enough
information to totally specify the location and connectivity of the
approximately 1011 neurons in the brain. Thus much of actual brain
structure must be due to random and epigenetic events that occur
during development. The local physical and chemical environment
of a neuron influences that cell's development. Thus, Reeke and
Edelman point out, the brain is not an optimally devised computer,
but a variable structure. This variability is likely to be functional,
since it can be used by natural selection.

Reeke and Edelman suggest that selection plays an important
role in deciding what structures are used in development, and how
their functioning develops during the brain's maturity. They think
that these active structures are selected from a set of "repertoires",
each of which is a set of interconnected neurons, and these selected
repertoires come to play a major role in the functioning of the
brain. This selection takes place over the lifetime of the organism
(as opposed to Darwinian natural selection, which takes place over
the lifetime of a species and its precursors). They have called their
theory neuronal group selection (NGS). In terms of the models we
have seen so far, it is a form of competitive, unsupervised learning,
but it differs from the others in that it is explicitly a theory of brain
function.

NGS theory provides for two forms of selection. The first
occurs during the prenatal period of the brain's development.
Selection between competing neurons during this period leads to the
development of connections. After birth, the connectivity patterns
are fixed, and the second form of selection occurs, whereby neurons
compete to participate in active pathways and networks. This form
of selection adjusts the weights of synaptic connections, but does not
change the connectivity of the brain.

88 Neural Network Methods for Learning and Relaxation

Reeke and Edelman list three required attributes of a selective
system: there must be a variety of entities able to respond to the
environment, these entities must receive input from their
environment, and they must be able to receive differential
reinforcement, so that one or the other entity wins out. They
estimate that the selective groups (repertoires) contain 50 to 10000
neurons each. They note that individual groups of neurons can
neither be too specific in their responses to stimuli nor can they be
too general; in the former case, it is impossible to have, in the brain,
enough groups to handle all the possible stimuli, and in the latter
case, the groups cannot discriminate between stimuli.

Reeke and Edelman’s system differs from simple competitive
learning in that the competitors are not individual neurons, but
rather groups of neurons. Each group has internal and external
connectivity that is determined during development; the strengths of
synaptic connections can be adjusted afterwards.

Another concept used in the NGS theory is re-entry. This is
simply the ability for the different neuronic groups to receive inputs
from one another. This concept encompasses lateral, feed-forward,
and internal connections, and provides a mechanism whereby
classifying groups can combine their outputs to form more complex
classifications.

Re-entry is a very general concept describing any situation of
combining outputs or of feedback, that is, the fact that the motor
activity of the organism affects what the organism is seeing as a form
of re-entry.

Reeke and Edelman cite evidence supporting the NGS theory.
Growth patterns of neurons do not seem to have their connections
specified by genetics, and different individuals have different
patterns of connectivity.

They have built three automata, named Darwin I,II and IQ.
They have built each system from repertoires, each of which is a set
of cells, consisting of (up to) several layers. Each repertoire has its
own fixed connectivity, but synaptic strength that can vary over
time. Reeke and Edelman's third automaton, Darwin III, which we
discuss here, differs from most connectionist systems in that it
actually has a simulated motor component, consisting of a multi
jointed arm and a moveable head.

The automata receive their input in the form of a retinal
array. The arm can actually move objects that are in the visual field;
the head movements perform translations of the field. There is no a

Neural Networks in Artificial Intelligence 89

priori information given about the classifications of the stimuli.
Reeke and Edelman claim that this distinguishes their system from
other Al and connectionist systems, but this claim is false: all
unsupervised learning methods operate without any external
information.

They designed into their system feature-detecting elements.
The features that are useful are the ones that long processes of
selection have shown to be useful. The systems are set up so that the
networks can adjust their synaptic strength based on the adaptive
value of a particular response or behavior. Darwin III is divided
into two parallel repertoires, Darwin and Wallace. For each
stimulus, Wallace matches it to the closest prototype, based on the
correlation of various features in the stimulus. Darwin provides a
unique response for each stimulus; Wallace provides the same
response for all the objects in a given class, and thus performs
categorization. Darwin and Wallace are intended to be two sample
modules; many other parallel channels would be needed in a real
brain simulation. Each of these channels has its own sampling of the
input. Each vof their two networks is organized in a hierarchy, in
which cells higher up in the hierarchy respond to increasingly more
complex features, as in a multi-layer perception.

The specific response of the Wallace subsystem in Darwin III
is used to guide the systems along the edges of connected areas in the
stimulus. It uses sensory neurons in the arm to detect continuities in
objects so that it can trace them.

The two repertoires are connected to one another only at the
higher levels. It is necessary that they not be connected on the lower
levels in order for each repertoire to serve as an independent
perceptual agent. Each repertoire has its own connectivity,
determined by its functionality. They use a Hebbian scheme to
modify connection strengths. A connection is strengthened when
both its inputting and outputting neurons are firing above a given
threshold. They also have a mechanism for weakening connections
when their input or output neurons are not responding so that all
connections do not eventually saturate.

They note that their system is capable of four basic processes:
categorization, recognition, generalization, and association. The
Wallace subsystem does categorization by means of a unique output
for each class of stimuli, but they state that it does not do naming, in
that it does not use a conventional symbol for the category. Of
course, the output itself could be considered a symbol.

90 Neural Network Methods for Learning and Relaxation

Recognition, as they describe it, is a process of gradually
strengthening responses to stimuli which the system has seen before.
Their system becomes habituated to stimuli in this fashion.

The Wallace subsystem is capable of generalization, which is
the ability to classify heretofore unseen stimuli. It gets this ability by
the way it classifies stimuli, which is by correlating features.
Wallace can give input to Darwin so as to make Darwin's responses
to similar stimuli more similar over time. Association occurs in
their system when a stimulus evokes a response associated with
another stimulus in the same category; Wallace's categorization
abilities coupled with Darwin's recognition capabilities produce this
associative behavior.

Reeke and Edelman claim that these four basic processes of
recognition, classification, generalization and association must
precede "more conventional learning" in any learning process; in
other words, they are prerequisites for more complex learning (such
as, perhaps, language learning, or learning of complex skills).

They feel that their theory indicates that object motion is
particularly important in learning how to discriminate objects; if
objects did not move then it would be difficult, in the absence of
prior knowledge, to tell where one object began and the other one
ended. Of course, Reeke are Edelman were not the first to recognize
the importance of object motion in region segmentation and object
recognition; researchers in computer vision have attempted to make
use of this information for quite a while (Cohen & Feigenbaum,
1982).

The performance of Darwin III is as follows: visual layers of
cells are connected to motor layers of cells controlling the "eye".
Initially all the connections can be amplified by selection. This
amplification is related to the extent to which a stimulus is centered
on the retina. Thus the system rapidly learns to center any object
that is presented to it, and then learns to recognize and categorize the
object. The eye tracks the stimulus by always keeping itself in the
center of the moving stimulus. Since the eye always directs itself to
the center of the stimulus, and keeps itself there, the system is able to
perform position-independent classification and recognition. The
system then becomes habituated to the stimulus, and this allows the
eye to wander off and become fixated on another stimulus.

The question of what proportion of the neuronal groups would
actually prove functionally useful in real problems remains open.

Neural Networks in Artificial Intelligence 91

Reeke and Edelman admit this, but they cannot say what this
proportion would actually be. One might think that if the neuronal
groups were relatively unstructured prior to learning a large
proportion of them might learn no function at all. This is an issue
which would have to be addressed in experiments. Reeke and
Edelman point out that if some of these neuronal groups turn out to
have the same functionality, then this could benefit the organism in
the case that some of them failed to function. They point out that
although their system may require a large number of units, the time
latencies are less than a system performs relaxation. They urge
researchers in AI to adopt more biologically-motivated models, as
opposed to models drawn from physics, such as Hopfield's, or those
drawn from more formal ideas of what intelligence is, such as those
found in traditional symbol-processing AI. Of course, many people
would agree with Reeke & Edelman that more attention needs to be
paid to biology. Unfortunately, little is known about brain
architecture, on the level of cellular connectivity, outside the sensory
and motor systems.

2.20. Genetic Algorithms
Many problems that have been studied using neural networks

can be viewed as optimization problems. For instance, many
networks, such as those wired with back-propagation, that compute
input to output mappings have the goal of finding the optimal set of
weights to best compute this function. They search a space of
solutions to find the optimal one, in this case a weight space.

Another class of algorithms that do a stochastic search on a
solution space are the genetic algorithms, invented by Holland
(1975). Like the NGS theory of Reeke and Edelman, these
algorithms are directly inspired by biological evolution. In a genetic
algorithm, there is a population of bit strings, called chromosomes.
The population changes over time. Each bit string encodes a solution
to the particular problem being attacked. One problem-specific
method is used to compute the fitness (or "goodness", or quality) of
each bit string, that is, how good a solution it is to the problem at
hand. Those bit strings with higher fitnesses will be allowed to have
proportionally more "children" than those with lower fitnesses.

Children are formed by crossover between the two parents, so
that a child would be formed by taking some bits from one parent
then some from the other, then some from the first, e.g., bits 1-10 of

92 Neural Network Methods for Learning and Relaxation

the child are bits 1-10 of one parent, bits 11-20 of the child are bits
11-20 of the other parent, etc. There is also a mutation rate; some
bits in each child are randomly set. Because more fit individuals
reproduce more, the population will see an increase over time of the
average fitness of its individuals.

To illustrate this class of algorithms, we consider work done
by Axelrod (1987) on the Prisoner's Dilemma, a classic problem in
game theory, using a genetic algorithm. In the Prisoner's Dilemma,
there are two prisoners who are suspected of working together on a
crime. Both are independently offered the opportunity to turn stool-
pigeon. If neither one turns State's Evidence, they both get a light
sentence. If only one of them becomes a stool-pigeon (defects) he or
she goes free, and the other gets a stiff sentence. If they both try to
become stool-pigeons, they both go to jail, and serve a moderate
sentence. This poses a dilemma because it always pays to defect, no
matter what the other person does. But if both people defect, they do
worse than they would if they cooperated.

Axelrod held a tournament in which the game was the iterated
Prisoner's Dilemma, in which different strategies competed in a
round-robin tournament to see which one was most successful. The
iterated Prisoner's Dilemma is simply the Prisoner's Dilemma
repeated over and over again, which allows each player to base his
or her behavior on the history of his or her interaction with an
opponent.

Many people submitted strategies to the tournament, some of
them very complex, yet a simple strategy won, dubbed TIT-for-
TAT. TIT-for-TAT cooperates on the first turn, and does whatever
the opponent did on the previous turn in all subsequent turns. After
the first tournament's results were announced, a second tournament
was held. The contestants in the second tournament were aware of
what the TIT-for-TAT strategy was, and that it had won the first
tournament. Despite this, TIT-for-TAT won the second tournament
as well; people were unable to construct a strategy to beat it.

Axelrod constructed the following genetic algorithm for this
problem. At each move, each prisoner can cooperate with the other
prisoner (C) or defect to the state (D). If the previous three moves
are taken into account, the algorithm must deal with 64 possibilities,
since there are four possibilities at each move (2x2), and therefore,
in three moves there are A? = 64 possible combinations. Thus a
strategy can be specified by giving a string of 64 Cs or Ds (bits;
0=C, 1=D) indicating which action should be taken in each of the 64

Neural Networks in Artificial Intelligence 93

possibilities. Also 6 bits are devoted to the strategy's hypothesis of
what the three moves that might have preceded the start of the game
were, for a total of 70 bits.

The space of possible strategies is therefore huge; there are
about 270=1021 strategies. The genetic algorithm searches this space
very rapidly.

Axelrod implemented a genetic algorithm with a population
size of 20 individuals. Games consisted of 151 moves. In each
generation, each individual met eight representative strategies in
games. These representative strategies were chosen by the fact that
play against them accounted for 98% of the variance in the
performance of the other strategies.

The populations were initially random, but they evolved—in
50 generations—into populations whose median individual, that is,
the individual that was median in performance, achieved
performance that was comparable to TIT-for-TAT. 40 runs were
made of 50 generations each. In 11 of these runs, the median
individual actually did better than TIT-for-TAT by taking advantage
of the weakness of one of the eight representatives, and by
breaking—under particular conditions—the motto of the TIT-for-
TAT strategy, which is: never be the first to defect.

He tried the same simulation without sexual reproduction, so
that only one parent contributed to the genes of the offspring. The
genetic algorithm still worked, but not as quickly—or as
effectively—within a given span of generations.

He also tried having the individuals in the population compete
against one another. Initially this leads to a decrease in cooperation,
but eventually this trend reverses itself, and the population becomes
more and more cooperative; over time, there are fewer and fewer
defections.

In related work, a learning procedure called "iterated genetic
hill-climbing" has been developed, which combines features of
genetic algorithms and hill-climbing algorithms (Ackley 1987, Brady
1985). This algorithm improves on the performance of both
techniques alone. Mjolsness, Sharp and Alpert (1988; see also
Mjolsness & Sharp 1986) have introduced a class of "genetic nets"
with recursively-structured connectivity, in which learning is applied
to rules rather than weights, and which are based partly on genetic
algorithms. They claim that these nets scale better to large problems
than do nets based on weight learning, because they are
hierarchically structured.

94 Neural Network Methods for Learning and Relaxation

2.21. Reinforcement Algorithms
Reinforcement algorithms are a class of algorithms for

learning automata. The automaton takes one of a set of actions based
on a set of corresponding probabilities, and the environment
("teacher") responds to the automaton's action by indicating
"success" (+1) or "failure" (-1). The automaton then adjusts its
behavior based on this feedback by altering the set of probabilities.
This is repeated, until, all being well, the automaton's behavior
converges to good performance.

One specific instance of this class of algorithms is the Linear
Reward-Penalty (Lr.p) algorithm (Narendra & Thathachar 1974).
In this algorithm, the set of actions is denoted by (a^ >...,ar) and the
respective probabilities for these actions on the kth iteration are
(Pk>-;Pk).

On the kth iteration, a reinforcement signal bfc, which is either
-1 or +1 is supplied (but no other input). If the action taken on
iteration k is ak- ah and bk= 1, then:

pM + oV-pP)
Pkh~(l'a)P(k iorjrH

If bk=-1, then

P&l=(l-b)P{l }
P k l l ^ j + (^tyPk* for j* i

This notation is taken from Barto and Anandan (1985). Thus
this algorithm increases the probability of an action that is successful
by increasing it by some fraction of the difference between it and
one, and decreases the probability of all the other actions. In the
case of the action's failure, its probability is decreased and every
other probability is increased, a and b are the learning rates of the
algorithm.

This can readily be translated to a connectionist network.
There are r units. If unit r fires, this corresponds to action ar being
taken. The probability density in time that any unit will fire is given
by the probabilities above. After the one unit fires, the environment

Neural Networks in Artificial Intelligence 95

immediately feeds the reinforcement to all the units, and they reset
their own firing probabilities accordingly. See Figure 2.16.

This algorithm gets only one bit of information at a time
from its outside environment. It can learn to adjust its behavior so
that its responses are constrained in an interesting manner, but it can
not perform association and classification, two processes of primary
interest to cognitive science. Barto and Anandan (1985) therefore
extended it to perform these tasks.

In their first extension, which
they call associative reinforcement
learning , the environment provides
not only the reinforcement, but an
input vector xk on the kth iteration
as well. The r possible responses of
the network can be viewed as a
classification of the set of input
vectors into r groups; the network
will learn to make the right
classification, provided the teacher
gives consistent reinforcements.
The teacher has an array d(xk, ak)
which determines what the
reinforcement to action ak should
be, given input vector x k • See
Figure 2.17 for a diagram of the network.

In the case of two possible outputs al and a2, corresponding to
a partition of the input into two sets, it is known that the number of
classification errors of input x is minimized if output a l is chosen
for x when P(al/x) > P(a2/x), and a2 is chosen when the inequality is
reversed. The only trouble is that the system has no way of knowing
these conditional probabilities (in the case of disjoint sets, one of
them will always be one and the other zero; in the case of
overlapping sets, they will both be non-zero for vectors that are in
the intersection of the two sets).

Instead of these probabilities, they use a vector 6 to
approximate them, such that 6-x =P(al/x)-P(a2/x). If 6-x is positive,
al is chosen; if 6'X is negative, a2 is chosen. 6 changes over the
course of the learning.

Z is defined to be the class label of an input x; if x is in the set
corresponding to a], then z =1, if a2, then z = -1. It can be shown

recieving reinforcement from the
environment.

96 Neural Network Methods for Learning and Relaxation

(Duda and Hart 1973) that if E((frx - z])2) is minimized (where E
denotes the expected value), then the error in classification is
minimized. This makes intuitive sense, since you want O'X to be
positive when z - 1 and negative when z=-1, and the above formula is
small under both of these circumstances.

Barto and Anandan use a gradient descent procedure, the
Robbins-Monro algorithm (Kasyap, Blaydon & Fu 1970). The
partial derivative with respect to 6 of the above expected error
formula on the kth iteration of the algorithm is given by:

2[6k'*k * Zk]*k

This is used to adjust 0 in the course of the learning:

Qk+ l = @k ' Pk[@k'%k ' Zk]%k

The pic are constants which vary over the course of the learning;
they, at some point in the learning, get progressively smaller, and
are subject to some formal requirements for convergence (see Barto
& Anandan 1985 for details).

The components of 9 can be
interpreted as weights on
connections connecting each
component of the input to a single
perceptron output unit, which
outputs 1 if its input is positive and
zero otherwise. (If one unit for
each of the classes al and a2 is
desired, the connections can be
duplicated for a second unit, whose
polarity is reversed). See Figure
2.18 for a diagram. This
interpretation of these equations as
a neural network applies to the rest
of our discussion. Input r response

They add an element of Sector x units; output
randomness to this associative _1 or 1
reinforcement learning algorithm to Figure 2.17. An associative
create the Associative Reward- reinforcement learning network.
Penalty (A r .p) algorithm. Again

Neural Networks in Artificial Intelligence 97

there are two actions ak= 1 and ak=-1, and two reinforcements bk= 1
and bk=-1. The rule for choosing the action is changed to:

ak= +1 if 9k -xk+Ck > 0
ak- -1 otherwise.

Gk is a random variable whose distribution is known in
advance. Thus E(akJ9k,xk), the expected value of ak given values of
9k and xk, is known. The formulas for updating 9 are essentially
the same as in the Robbins-Monro algorithm given above, with the
expected value of ak replacing ak itself. A factor A is added to allow
for differential reinforcement between reward (b=1) and penalty
(b=-1). In the case of reward we have

Ok+i-Ok-pkl E{aijek,xk}-bkflkJxk

In the case of penalty

Q k+i=6k-X pk[E {a/J 6k,Xk} -bkflklxk

If A=0, Barto and Anandan call this the associative reward-inaction
(Ar-i) algorithm.

They show that the A r -p algorithm reduces to other
algorithms under certain conditions. If the input vector x is a
constant, and the random variable has a uniform distribution over
the interval (-1, 1), the A r_p algorithm reduces to the Lr_p
algorithm. If the random variable is always zero and A=l, the Ar_p
algorithm reduces to their two-category supervised learning
classification algorithm given above.

The A r -P algorithm
reduces to the perceptron
convergence procedure if the
expected value E(akJ9k,xk) is
replaced by ak, and the
distribution of £& is given by
a step function, although it
will not necessarily converge lnPutVectorX

to a solution. In the case in Figure 2.18. Interpretation of 6 as a
which the input vectors are perceptron.

98 Neural Network Methods for Learning and Relaxation

all unit basis vectors, the Ar-p algorithm functions as a look-up
table.

They show that under the conditions that (1) the input vectors
are linearly independent (2) they each occur with finite probability
(3) the random variable's distribution is continuous and monotonic
(4) the sequence pk satisfies certain conditions which amount to it
eventually decreasing to zero, then the weight vector converges,
which implies a certain formal type of optimality.

They implemented the Ar.p algorithm for use in two tasks,
comparing it to the non-associative LR.p algorithm and the selective
bootstrap algorithm (Widrow et al. 1973), which is another
algorithm that does associative reinforcement learning. As I
decreased, the learning rate of the Ar.p algorithm decreased, but it
approached an asympotote that was more nearly optimal than the
selective bootstrap algorithm. The Lr-p algorithm, being non-
associative, did not detect the input vectors, thus its expected success
probability remained at a steady 0.5, rendering it (and all other non-
associative algorithms) useless for associative learning. In fact, they
could have predicted this behavior without bothering to implement
it.

Both tasks involved just two input patterns (x(l) and x(2))md
two actions (-1 and +1). For task 1, the success probability matrix d
for task 1 was given by d(x(l) , -1) = 0 .8, d(x(l), +1) = 0 .1, d(x(2)
, -1) = 0.2, d(x(2), +1) = 0.9. In this task, the selective bootstrap
algorithm outperformed the Ar-p algorithm (in terms of percent
success), because the success probabilities, with respect to each
action, are far apart and, for each input, one is on each side of 0 .5.
In the (more difficult) task 2, where d(x(V, -1) = 0.2, d(x(l),+1) =
0.4, d(x(2), -1) = 0.9, d(x(2), +1) = 0.6, the Ar .p algorithm
outperformed the selective bootstrap algorithm, whose performance
oscillated. They provide a mathematical account of why the selective
bootstrap algorithm will not converge, along with other algorithms
in its class, for "unclear" tasks like task 2.

2 .2 2 . Temporal Difference Methods
Sutton (1988) discusses a type of learning mechanism, which

he calls a temporal difference method, in which credit assignment—
which, with neural networks, corresponds to the adjustment of
weights—is based on the difference between temporally successive
predictions of the correct output instead of, as in back-propagation

Neural Networks in Artificial Intelligence 99

and other error-based methods, the difference between the predicted
and desired outputs.

This method is applicable to the problem of learning to
predict, that is, using past experience to predict the future behavior
of a system like the weather, a game, or the economy. Sutton claims
that temporal difference methods require less computation time than
ordinary methods and converge faster to an optimum, for a class of
learning problems that Sutton refers to as multi-step problems, in
which the correctness of a particular prediction is not revealed until
several steps after the prediction. He gives the problem of predicting
Saturday's weather on Tuesday as an example of such a multi-step
problem. Although temporal difference methods are only applicable
to multi-step problems, Sutton argues that most real-world problems
are of this type. For instance, he points out that the last year's
predictions about this year's economy are validated or invalidated
gradually as this year passes.

Sutton formalizes a learning problem as follows: x j , x2, x3
xt is a sequence of observations (for a connectionist network,

inputs), w is a vector of weights, and P i, P2, P3 Pt is a sequence
of predictions (for a network, outputs). Sutton proves that the
weight update rule

t
Awt=a(Pt+i-Pt)]r VwPk

k=l

where a is the learning rate and Vw is the gradient operator with
respect to the weight vector, so that VwPk is the vector of partial
derivatives of Pk with respect to each component of w, is precisely
equivalent to the Widrow-Hoff delta rule, the perceptron
convergence procedure (see section 2.4). Sutton refers to this
algorithm as TD(1), the first-order temporal difference procedure.
By extension, he defines the family of learning procedures TD(X) by

t
Awt= a(Pt+i~Pt)X ^ wPk

k=l

where gradients into the past are weighted by decreasing factors of
A. Thus recent gradients are favored over older ones. Typically A
ranges between zero and one.

100 Neural Network Methods for Learning and Relaxation

Sutton gives an example of how the temporal difference
methods can lead to better performance than ordinary methods.
Suppose we have a state A which leads to state B which in turn lead
to states C and D. C, which is a losing state, is reached from B 90%
of the time; D, a winning state is reached from B 10% of the time. A
supervised learning method would associate state A with either state
C or state D, so would either associate it with fully winning or fully
losing, each time state A and either states C or D shows up. The
temporal difference method always will associate A with state B, and
will more quickly converge to the 90% goodness value associated
with B. This is, as Sutton points out, not a proof that temporal
difference methods are better; one can construct scenarios in which
supervised learning works better, but Sutton believes these are the
exceptions.

In order to more rigorously illustrate the superiority of
temporal difference methods over standard supervised learning,
Sutton chose a simple problem involving a random walk through a
linear sequence of states A-G as shown in Figure 2.19. In this
problem, A and G are final states; from each of states B-F there is an
equal probability (1/2) of a move to the state immediately preceding
and a move to the one immediately following it in the alphabet. All
walks start with state D; one example of a walk is DEDCDCBCBA.

Figure 2.19. A network of states used for random walks by Sutton (1988). D is the
starting state. Reprinted by permission.

The problem that Sutton chose to have his systems leam was
the probabilities, for each of the states B-F, that the system will end
up in state A or G . Each walk is memory-less; thus these
probabilities are constant during each walk. This was formalized as
follows: z = 1 denotes a final state of G, and z = 0 denotes A. xi in
the formalization discussed above is the z'th state of the walk; the
predictions Pi are the expected values of z at each xi. The learning
algorithms TD(X) were trained on 100 training sets of ten sequences
(walks) each. Each training sequence was presented repeatedly until
convergence. Values of X=1 (Widrow-Hoff), and A= 0, 0 .1, 0.3,

Neural Networks in Artificial Intelligence 101

0.5, and 0.7 were used. The learning rate a was also varied, with a
taking on values of 0 , 0 .1, 0.2 ,..., 0 .6.

Based on the root-mean-square error computed between the
ideal predictions, which can easily be shown to be 1/6, 1/3, 1/2, 2/3,
5/6 for states B -F , and the asymptotic prediction in a training
sequence, averaged over the 100 training sequences presented to each
algorithm, he found that the error (for the best value of a for each
X) declined rapidly as X was lowered below 1, and was optimum at
X=0. X=0 corresponds to the case where the current prediction is
compared only to the previous prediction. This is due to the fact,
which Sutton proves, that TD(0) minimizes the error on trials
presenting after training, whereas Widrow-Hoff (TD(1j) minimizes
error during training.

He also did a second experiment in which each training
sequence of 10 walks was presented to each algorithm just once.
Here, he found that the best value of X was close to 0.3, again
comparing values of X on the basis of their respective error-
minimizing values of a. The reason that the optimum X exceeded 0
is as follows: because TD(0) takes quite a bit of training to adjust the
prediction values of states occurring earlier in a sequence (walk),
whereas TD(X) with X>0 propagates the adjustments backwards
faster, within a single learning trial.

Sutton extended the TD(X) class of algorithms to several
related problems. His first extension was to the case in which the
algorithm, instead of predicting the eventual outcome of a sequence,
predicts the remaining cost of the sequence, if a cost function is
associated with each step. His second extension was to modify TD(X)
so that the weight vector is modified during each sequence, instead of
just at the end. Finally, he extended the class of algorithms to handle
the problem of, at each point in the xt, making a prediction for some
fixed amount of time later. In this case, for instance, one can use the
fact that the prediction you make of Monday's weather on the
preceding Monday should be as similar as possible as the one made
on the preceding Tuesday. For details, see Sutton (1988).

Sutton's (1984) adaptive heuristic critic (AHC) learning
method is closely related to the TD(l) class of algorithms. The AHC
algorithm is used for predicting cumulative outcomes, such as the
total future return on an initial investment. The trouble is that this
sum is often infinite, so that is often discounted as follows: if the
income generated at time t is ct, the discounted sum is

102 Neural Network Methods for Learning and Relaxation

zt= y , fat+k+i
k=0

where /ranges from 0 to 1, and is called the discount rate. If Pt is
used to predict zu then it is readily shown that Pt=ct+1+yPt+l- The
mismatch between successive predictions is therefore (ct+l+yPt+1)-
Pt. The AHC method uses this error to adjust the weights in a
similar manner to TD(X), as follows:

t
Awt=cx(ct+i+']/Pt+i~Pt) 5 ̂A* kVwPk

k=l

Here the error term from TD(X), (P t+ 1 - Pt), is replaced by the
discounted error (c t+ l+ yP t+ l)-P t• Anderson (1986) used a variant
of this AHC algorithm in his work on problem-solving in the
connectionist paradigm (see the next section).

2.23. Problem Solving Using Reinforcement and
Back-propagation

Anderson (1986a) tackled, in his Ph.D. dissertation, the topic
of "Learning and Problem Solving with Multilayer Connectionist
Systems". He uses feed-forward networks with no recurrent
connections and uses Rumelhart and co-workers' back-propagation
algorithm and Barto and co-workers' reinforcement-learning
algorithms, and variants of these that he developed, to a variety of
tasks that involve the learning of new features. He also developed an
algorithm that combines aspects of back-propagation with Sutton's
AHC algorithm for learning evaluation functions (see the previous
section) and a reinforcement-learning algorithm to learn search
heuristics for problem solving. He applied this algorithm to the
problem of balancing a pole on a cart, and to the Towers of Hanoi
puzzle.

In a connectionist system a concept can be viewed as a region
in an n-dimensional feature space, defined by the values of the inputs
to the system. This is a definition that Anderson borrows from
Utgoff (1986); if the stimuli, in more traditional AI, are strings of
symbols, then a concept is a set of strings, which is a region (not
necessarily connected) in the space of possible strings. Following
this, the exclusive-or task is the task of learning to separate the bit

Neural Networks in Artificial Intelligence 103

vectors (1 0) and (0 1), which are assigned the value 1, from the bit
vectors (11) and (0 0), which are assigned the value 0. As Minsky
and Papert (1969) have shown, this classification task cannot be
accomplished with a two layer perception. As we have seen, it
requires at least three layers.

Anderson did not choose the exclusive-or function for his
exploration of learning discriminant features, because he wanted a
classification task that required more than one hidden unit for its
solution. He suspected that algorithms that performed well learning a
single feature would not necessarily perform well when required to
learn the behavior of more than one hidden unit. The function that
he chose for a more complex classification task was a multiplexer
function which had two address bits and four data bits in the input
vector. The two address bits serve as a binary number indicating
which of the four data bits to route to the output. The system must
learn to route the correct bit. In terms of concept learning, as
outlined above, the problem is of dividing the set of possible input
vectors into two sets, one for which one is output, and the other for
which zero is output.

Anderson used the perception convergence algorithm
(Rosenblatt 1961) to learn the multiplexer function. He defines the
error on iteration k, ek(t) as:

Z (d j(t) - y j (t))
jeO

where O is the set of output units, t is the time, dj(t) is the desired
output of unit j and yj(t) is its actual output. He sums this ek(t) over
all the s time steps of an individual convergence procedure, and then
averages this sum over a series of runs to arrive at a performance
measure

! * = r E Z ek<‘>
k—1 t=l

Since fi treats all the time steps of a run equally, Anderson
developed a second performance measure v which accounts for
improvement toward the end of a run. The way this is measured is
by freezing the weight values at the end of the run and then
presenting the system with all possible inputs (in the case of the

104 Neural Network Methods for Learning and Relaxation

multiplexer there are 26= 64 of these) and summing the errors for
all 64 of these to obtain the total error hk for run k:

h k = i Z Z \ d xj-yxj\
xeX jeO

where X is the set of 64 possible inputs, J is the set of output units,
dxj is the desired output of unit j on input x, and y is the actual
output. This is averaged over a set of r runs to obtain

v = f i >
k=l

v is a measure of the quality of a solution, and jx is a measure
of how fast the system found a solution.

The m u ltip lex er in p u t v e c to r d e s ire d o u tp u t
function is not linearly (0,0,0,1,0,0,0.5) 0
separable using a single (0,0,1,0,0,0,0.5) 1
linear threshold perception (0,1,0,1,0,0,0.5) 1
unit, as Anderson readily (0,1,1,0 ,0,0,0.5) 0
shows. He considers the four
vectors shown in Table 2.1,
with their desired outputs,
and notes that, for example, the relationship between components
two and three is an exclusive-or. The exclusive-or cannot be handled
by a two-layer perceptron, which therefore cannot handle the
multiplexer function either.

In order for a single unit to handle the classification task,
additional inputs must be added. If the input is a]a2dld2d3d4 (two
address bits and four data bits), then the function that is to be
computed is

Table 2.1. Multiplexer function used by
Anderson (1986a). Reprinted by permission

ajci2dj va 10-2̂ 2 VQî 2^3 vajcfycb

The four inputs that are added (new features) are therefore the four
components of this "or" equation; each of them corresponds to a
particular configuration of the address bits and the data bit that that
configuration selects.

In addition to the original input pattern a]a2d]d2d3d4 and
this pattern augmented by the four additional features mentioned
above, Anderson considered a third representation in which the

Neural Networks in Artificial Intelligence 105

input vector had 64 components and each stimulus was represented
by a vector with exactly one bit set to one and the rest set to zero.
These are called, in vector algebra, the 64-bit unit basis vectors, and
there are 64 of them.

Thus 64 6-bit numbers in base two are effectively replaced by
64 numbers essentially in base one. The perception convergence
algorithm has no problem classifying these inputs as zero or one,
since it has a separate weight associated with the connection to each
of the 64 inputs.

As one might expect, the 64-input model converges faster
than the six-bit/four additional features model. The original model,
without the four additional features, does not converge at all, as
expected. The convergence graphs are given in Figure 2.20. The
new feature representation gradually comes to learn the proper
categories, whereas the 64-component model exhibits perfect
performance as soon as it has been presented with all 64 possible
inputs, since it is functioning as a look-up table. This is interesting
only as an extreme example of presenting the system with the most
readily interpretable information.

0 . 6

0. 5

0. 4
A V E R H G E
E R R O R S

P E R
T I M E S I E P Q 2

0

Figure 2.20. Convergence graphs of three models on the multiplexer task of
Anderson (1986a). Reprinted by Permission.

Anderson points out that learning new features is most useful
if it helps the system to group together those inputs that require the
same output; in other words, a new feature should make input
vectors that belong in the same cluster seem more similar.
Anderson did a series of experiments in which a perceptron was
made to learn the association between the 16 unit basis vectors
composed of a 16-bit input each, x \, x2 ,■■■, *16- There was a 4-bit
output; x l ,..., x5 got output (1010), x<5 ,•••> *10 got output (1111)

T I H E S T E P S

106 Neural Network Methods for Learning and Relaxation

and x 12 x!6 got output (0101). His system learned these
outputs with the unit basis vectors alone as input, and augmented by
two- or three-bit class labels added to the input; the three-bit class
labels were (001), (010) and (100), and the two-bit ones were (01)
(11) and (10).

He handled the learning process somewhat differently in this
example. The input units were completely connected to the four
output units, but he trained the system in two phases. In the first
phase the first two output units were trained; in the second phase the
second two units were trained, starting with the weights as they were
at the end of the first phase. The purpose of this is to show how the
learning of features that can aid in input classification (i.e. the first
two bits of the output) can facilitate further learning. The new
features mentioned above were not added until the start of phase 2.

In the absence of the new features, learning proceeds at the
same pace in phases 1 and 2, f i l= ji2= 22 (|i is the measure of the
speed of convergence mentioned above). With the three bits added
in phase 2, i±2 was equal to 4, and with the two bits added, jX2 was
equal to 3. The reason the two bits performed better than the three
bits is because they were the same as the first two bits of the desired
output.

Anderson compared
the performance of a variety
of algorithms on the
multiplexer task, using a
three-layer network (see
Figure 2.21) containing input
units, four hidden units and
an output unit. Error back-
propagation and Barto and
Anandan's (1985) Ar -p
algorithm were best and
second-best respectively in terms of speed of convergence. Various
modifications of the Ar-p algorithm were designed in order to get
more accurate assignment of credit or blame to the hidden units
beyond the global reinforcement signal, but, even with these
variations, its performance still did not surpass the error back-
propagation algorithm. This is not surprising, since back-
propagation is given more information than the Ar.p algorithm.
Other algorithms that searched the space of weights for minima

Figure 2.21. Three-layer network used by
Anderson (1986a) for his multiplexer task.
Reprinted by permission.

Neural Networks in Artificial Intelligence 107

were tried, but their results were even worse. The perceptron
convergence procedure did not converge to a solution at all, as
expected.

2.24. Problem-Solving Networks
For problem-solving, Anderson uses networks that combined

the error back-propagation algorithm with the AHC algorithm of
Sutton (1984). His first network, the evaluation network, is used to
learn an evaluation function for a general strategy learning task.
The second network is used to learn search heuristics formalized as
the selection of an action from a set. Both of these networks are
three-layer.

The evaluation network is contains of mh hidden units and one
output unit; the action network has mh hidden units and mo output
units. Each unit in both layers of units receives all of the n inputs
from the environment; each unit in the output layer (in the case of
the evaluation network, just the single output unit) receives all of the
n inputs plus the mh outputs of the hidden units.

The hidden units produce output which is a logistic function
of the sum of their weighted inputs. In the evaluation network, the
output of the output unit is simply the weighted sum of its inputs.
The action network hidden units behave the same as those of the
evaluation network; again, their activation is a logistic function of
the weighted sum of their inputs. In the output units of the action
network, noise is added to the weighted sum of their inputs. The
noise is distributed according to the distribution function

The output units are organized in winner-take-all networks; the
output unit receiving the most input (including noise) wins the
competition, and output one; the rest of the units output zero.

To train the evaluation network, Anderson used the heuristic
reinforcement function f(t) defined by Sutton (1984). This is given
by r(t) = 0 if the system at time f is in a start state,

r(t) = r(t)-p(t-l,t-l)

if the system at time t is in a goal or failure state, and

108 Neural Network Methods for Learning and Relaxation

r(t) = r(t)-yp(t,t-l)-p(t-l,t-1)

otherwise. The p's are the outputs of the output unit of the
evaluation network at time t and t-1; p(t,t-l) is computed using the
weights at t-1 to avoid having a change in weights affect the
heuristic value, beyond the environment itself. 7 is a constant called
the discount rate, between 0 and 1; r(t) is an (externally supplied)
reinforcement value.

The second two terms in r(t) measure the change in the
heuristic value of p. Thus if p has increased, the effect of the weight
change formula is to decrease the weights from those units with
negative potential and to increase those with positive potential. The
opposite occurs if p has decreased. Therefore credit is assigned to
different units based on the strength and magnitude of their
potential. The discount rate allows the algorithm to "ignore" a
certain rate of increase in the evaluation function, that is, a rate
equal to 1/y. This is appropriate since one hopes that the evaluation
function will be increasing over time.

Thus r(t) measures both the external reinforcement and the
change in heuristic output value; it is used to update the weight
values of the network. The equation used to update the weights or
connections from unit i in the input or the hidden units to the output
unit is:

vi(t) = vi(t-l)+fir(t)yi(t-1 ,t-l)

where v; is the weight, yi is the potential of the hidden or input
unit i, and is a constant, the learning rate.

Output unit j of the action network updates its weights
according to a similar rule:

wij(t) = wij(t-l)+pr(t)(aj(t-l)-E(aj(t-l)/w;z))zi(t-l)

where wij is the weight connecting unit j with each of the hidden
units and the input, aj is the potential of the jth action unit, and
E(aj(t-1)/w;z) is the expected potential of the jth action unit, given
the particular values of w and z. Thus the weights are adjusted by
an amount proportional to the discrepancy between the actual and
expected values of aj(t-l). The expected value is simply equal to the
probability that aj will be equal to 1. Unusual actions therefore

Neural Networks in Artificial Intelligence 109

create relatively more change in the weights. The r(t) term allows
increase in the weights if there is an increase in p.

For the hidden layer of the evaluation network, a variant of
the error back-propagation network is used, but since we do not
know the correct output in each case (which is necessary in order to
use ordinary back-propagation), r is used as the back-propagated
error. Since the weights in the output layer of the action network
are adjusted by a term in which the expression playing the role of
the error is r(t)(aj(t-l) E(aj(t-1)/w;z)), this expression is what is
used as the error for the purposes of back-propagation. Anderson
uses a variant of back-propagation developed by Sutton (1985), in
which the sign of the weight instead of the weight itself is used, to
decrease the algorithm's sensitivity to its learning rate.

Anderson applied his evaluation and action networks to two
strategy learning tasks. The first of these was the pole-balancing
task, in which a pole is attached by a hinge to the top of a cart and
the system must move the cart so as to keep the pole balanced. The
second of these was the Towers of Hanoi puzzle. In this puzzle, you
have three pins and n disks. The disks increase linearly in size from
1 to n, and initially they are stacked in order on the first pin, with
the largest on the bottom. The goal is to move all the pins so that
they are again stacked in order on the third pin. The disks may be
moved one at a time, and a larger disk may never be placed on top
of a smaller one.

The problem is readily solved with the following 3 step
recursive algorithm: (1) move n-1 disks recursively from pin 1 to
pin 2 (2) move the largest disk from pin 1 to pin 2 (3) move n-1
disks recursively from pin 2 to pin 3. Steps 1 and 3 are recursive
calls to the algorithm. The Towers of Hanoi puzzle has been studied
from the point of view of state space exploration in AI using search
heuristics (e.g. Langley 1985) and human strategies have been
modeled (Anzai & Simon 1979).

The state of the Towers of Hanoi puzzle may be completely
specified by a vector of length n which describes for each disk
which peg it is on. (The order on each peg must always be from
smallest to largest as one goes from top to bottom on the peg.)

In Anderson's system there are three reinforcements r(t)
provided to the action and evaluation networks. If the goal state (in
which all disks are on pin 3) is reached, r(t) is set to 1. A
reinforcement r(t) of -1 is given if a two-step loop is selected; that
is, if the system chooses an action which reverses the previous

110 Neural Network Methods for Learning and Relaxation

action. This is to prevent the system from making such loops. This
rloop(t) is given only to the action network, not the evaluation
network, since we do not want the evaluation of a state to go down
simply because it was visited in a loop. Finally, a constant
reinforcement r(t) of -0.1 is given on every time step that does not
lead to a goal state. This is to encourage the system to select short
paths to a goal state.

For his experiments, he used a three-disk system. The input
to the evaluation network is the state of the puzzle encoded as nine
bits; for instance, the state (123) is encoded as (100 010 001). (This
is the state in which disk 1 is on pin 1, disk 2 is on pin 2, and disk 3
is on pin 3.) Actions are encoded by six bits; one for each of the six
possible actions (disk movements, which can each be expressed as
ordered pair of pins). The action network receives as input the
current state and the previous two actions, for a total of 9 + 6 + 6 =
21 bits.

He first ran simulations of his system with no hidden units; the
equations given above for adjusting weights were used, with the
single change that r(t)+rloop(t) was substituted wherever r(t) was
found. The system with no hidden units usually learned to solve the
puzzle with paths that were far from optimal; on average it found a
path to a solution of length 30, whereas the optimum number of
steps is seven. In the best example, which learned a path of length
nine, the evaluation function learned to evaluate more highly states
in the search space that were closer to the final state.

The three-layer system performed much better: Only the
evaluation network was three-layer; the action network remained
two-layer. In nine out of the ten runs in which Anderson trained the
network, it learned the optimal path of length 7. He used parameter
values that were arrived at by testing 20 sets of parameters to
determine which arrived at the best performance. It learns an
evaluation function such that if there are two states A and B such
that a move from A to B moves toward the goal state, then B is
evaluated higher than A. He analyzed how the function is
constructed in terms of the contributions of the hidden units, many
of which are specialized to evaluate various portions of the state
space.

One of the main features of the action network is the
development of strong negative connections between actions and
their inverses. There are also connections that cause the selection of

Neural Networks in Artificial Intelligence 111

a particular action on one step to make the selection of another
particular action on the next step more probable.

One problem with this technique of learning good behavior on
heuristic search tasks is the learning time. It took 100,000 learning
steps to learn an optimal solution to the three disk Towers of Hanoi
problem, which is a toy problem with a small search space. Since
search spaces for more complex problems, such as adversary games
like chess or reversi, tend to be large, training times and numbers of
hidden units required might be unworkable. More work needs to be
done along these lines.

2.25. Extensions to Learning Algorithms
A number of researchers have developed extensions to the

basic back-propagation algorithm given in section 2.12. For
instance, Sandon and Uhr (1988) have developed a technique for
dealing with the fact that back-propagation sometimes gets stuck in
local minima in weight space. Ballard (1988) has also developed a
technique for dealing with local minima. Kruschke (1988) discusses
techniques for minimizing the number of hidden units required to
solve a given problem. McCloskey and Cohen (1987) demonstrated
the tendency of back-propagation and other connectionist algorithms
to "forget" old memories, and Hinton and Plaut (1987b) have
devised a scheme to cope with this tendency, substituting new
knowledge for it. I discuss some of these techniques in more detail
in the following sections.

Back-propagation and related procedures are prone to the
problem of poor convergence in some cases. Hinton (1987) gives the
example of the case in which the error surface has steep walls
surrounding a relatively flat ravine. Various methods have been
devised to deal with such problems. (Widrow & Steams 1985, Amari
1967, Parker 1987, Plaut & Hinton 1987)

One big problem with back-propagation is that it is
biologically implausible. No mechanism has been found whereby
neurons transmit error signals backward. One response to this is that
back-propagation simply finds interesting networks that biological
evolution may have found by other means. Some authors have
suggested methods to make back-propagation more plausible, e.g.
Parker (1985), Hinton & McClelland (1987a).

112 Neural Network Methods for Learning and Relaxation

2.26. Escaping From Local Minima
Sandon and Uhr (1988) introduced a new technique for

escaping from the local minima that gradient search methods such as
back-propagation often lead to. Typical methods for escaping from
local minima are: to add noise (such as in the Boltzmann machine),
or to jolt the weights from their position in weight space, to escape.
Sandon and Uhr suggest the use of what they call a "local interaction
heuristic", adapted from ideas in computer vision. Hierarchical
methods of visual processing (Uhr 1972, Tanimoto 1978, Dyer
1982) make use of the fact that much of the information that you
want to integrate can, at any given level of resolution, be found in a
local neighborhood of an image point.

Sandon and Uhr point out that this locality principle can be
applied to the general problem of finding global minima in layered
feed-forward neural networks. It is based on the idea of clustering.
The nodes are grouped into local clusters, and the error function that
is propagated back is modified so as to avoid having two nodes in the
same cluster respond to the same patterns of activation. Sandon and
Uhr point out that such redundancy in the functions computed by
nodes means that a needed feature may not be represented.

They applied this to the
familiar exclusive-or (xor)
problem, with the smallest
feed-forward network (in
which only adjacent layers
are connected) that could
solve this problem (see
Figure 2.22). In one test-
case, back-propagation
converged to the correct
solution, a global minimum,
but in another, with a
different initial setting of
weights, the network gets
stuck in a deadlock with the
two hidden units computing exactly the same function. In this
second case, they modified the error back-propagated so that the two
hidden units formed a cluster. Only the unit that would receive the
largest error from normal back-propagation received the same error
as under normal back-propagation; the other unit received -1/4 that

Figure 2.22 Networks used to solve the
exclusive-or problem by Sandon and Uhr
(1988). Reprinted by Permission.

Neural Networks in Artificial Intelligence 113

value, so that the two units receive signals of opposite polarity, and
the deadlock is defeated. Using this algorithm "fixed" the second
test-case, while the correct results were maintained on the first test-
case. They mention other rules for distributing the errors among the
cluster; one rule, which set the other unit (that one not receiving
maximal error) to +1/4 the value of the maximal unit, still
converged to a correct response.

They applied their method to several other problems, such as a
network that rotated three bits one bit to the left, in a circular
fashion, e.g. 101 to Oil, and a two-dimensional shift network (for
translating an input pattern). It worked better than standard back-
propagation for both cases, although the two-dimensional shift
network, being a more complex network, did not achieve very high
performance; the best was 59% correct convergence using Sandon’s
first modified error rule.
2.27. Creating Bottlenecks

Kruschke (1988) has studied the issue of exactly how many
hidden units are needed to accomplish a given mapping, using back-
propagation. He gives several reasons why the number of units
should be reduced; the first is parsimony: both the amount of
computer space and the amount of complexity are reduced with a
reduction in the number of units. In addition, with fewer units, each
unit is forced to compute efficiently; no units are wasted, and it is
often easier to interpret what each unit is competing. Another
reason for keeping the number of hidden units to a minimum is that
generalization performance tends to be better when fewer hidden
units are present.

The disadvantage of using fewer units is, according to
Kruschke, that local minima are harder to avoid, and the amount of
training time is increased. Kruschke refers to the minimum number
of units that compute a particular function as a bottleneck (since if
there were any less units, the information would not get through).
He has devised two methods which result, respectively, in two
different types of bottlenecks, local bottlenecks and distributed
bottlenecks. Local bottlenecks are created by starting with many
units and gradually attenuating away those units that are redundant in
terms of the representation in the hidden units.

He considers the variant of back-propagation that includes, for
each unit, a parameter called the gain in the activation rule. The
activation rule is thus

114 Neural Network Methods for Learning and Relaxation

ai=f(gineti)

where ai is the activation, gi is the gain and neti is the input
received by unit i. Kruschke notes that a unit with zero gain has
constant activation, independent of the input received. Also, as
Kruschke shows mathematically, since the gain acts as a
multiplicative factor in the back-propagated error, a unit with zero
gain also propagates back no error.

The gains are the attenuating factors that Kruschke uses to
create his local bottlenecks. The gains compete with one another.
Kruschke considers two units redundant if their weight vectors are
(nearly) parallel or anti-parallel. Thus, with each adjustment of the
weights, the gains are also adjusted by

A g i= -y £ cos2Z (w f , w f) g f
i

Thus all the gains are decreasing by an amount that is a
measure of their similarity of their weight vector to all the others
based on the square of the cosine of the angle between the weight
vectors, which is large when the vectors are close to being parallel.
The most similar nodes diminish each other’s gains by the largest
amount.

After each epoch of back-propagation, the gain was reversed if
the length of the weight vector for that particular node has increased,
and is decreased if it has decreased. Then the weight vector is
normalized. This way the gain comes to represent the length of the
weight vector and the weight vector itself is a unit vector indicating
its direction. This leads to an interaction between Kruschke's gain
competition algorithm and back-propagation.

He used these algorithms to minimize the number of hidden
units in the 4-4-4 encoder problem (see also section 2.11), in which
the 4 unit basis vectors in the set of 4-dimensional binary vectors are
each mapped onto another member of the set specifically, he used the
identity mapping, 1000—>1000, 0100-»0100, etc. 4-4-4 denotes 4
input units, 4 hidden units, and 4 output units. His algorithm
reduced the number of hidden units required to two by reducing the
gain of two of the hidden units, thereby creating a 4-2-4 network in
which the two hidden units that remained after the imposition of the
bottleneck contained a binary encoding of the input.

Neural Networks in Artificial Intelligence 115

The second approach that Kruschke took to reducing the
information flow through the hidden layer was the creation of what
he called a distributed bottleneck. This is based on Shepard's (1962)
concept of multi-dimensional scaling. What Kruschke did was to
compute the mean distance between all pairs of weight vectors. Then
each pair of vectors that were closer to each other than this mean
were moved closer together, and those that were further apart were
moved even further apart. This was done in the direction of their
difference vector. The effect of this algorithm over time is to make
all the vectors either parallel or anti-parallel to one another.

With moderate amounts of this dimensional compression, the
network still learned the 4-4-4 encoder, but the learning time was
increased. It did this, however, by exploring a smaller area in
weight space, in the sense that pairs of weight vectors tended to be
closer to being parallel or anti-parallel. Distributed bottlenecks
reduce the dimensionality of the back-propagation mapping without
reducing the number of units; thus they retain damage resistance
associated with redundancy. Kruschke notes that both types of
bottlenecks are not limited to back-propagation networks, but can be
created in a similar fashion with other learning paradigms, such as
that invented by Ackley and his co-workers for the Boltzmann
machine (see section 2.10).

2.28. Sequential Learning
McCloskey and Cohen (1987) considered the problem of

sequential learning in connectionist networks. Sequential learning is
common in people: for instance, as they point out, children learn
simpler addition facts (i.e., the ones involving smaller numbers)
before they learn more complex facts. It is possible to train a
connectionist network to do addition; some representation can be
made of the two operands in a feed-forward back-propagation
network with a layer of hidden units, and the network can be trained
to add them if random input-output pairs are employed in sequence.

They explored the ability of such networks to learn if the
inputs were not all presented at once, but sequentially. They trained
networks using both the Boltzmann machine and back-propagation to
respond correctly to addition problems involving one (e.g., 7 + 1 =
8). They then took this same network and trained it on problems
involving two. Almost immediately after commencing training, even

116 Neural Network Methods for Learning and Relaxation

before the network learned to handle the problems involving two, it
"forgot" the correct answers to the problems involving one.

This is not the behavior exhibited by human subjects. For
instance, in a well-known experiment by Barnes and Underwood,
described by McCloskey and Cohen, subjects were trained on an
associative pair task of form A-B until they could recall the entire
list of A-B pairs, and then were taught A-C associations. Subjects
were given context information as to whether they were being asked
to provide a response of form B or C. Even after subjects achieved
good performance on the A-C list, they still retained better than 30%
accuracy on the A-B list. This is in marked contrast to McCloskey
and Cohen's model's performance; it forgot all the A-B associations
quickly.

McCloskey and Cohen adjusted the representation of the input
and outputs (local vs. distributed; more units vs. less) and the
number of hidden units to attempt to deal with this forgetting, and
changed the learning rate. None of these efforts met with any
success. They explain this behavior by reference to regions in the
space defined by the set of weights. The solution to the "add-1"
problem is represented by a region in this weight space. The
solution to the "add-2" problem is represented by a different region.
The solution to the combined problem is represented by the
intersection of these regions. When trained on stimuli from the
combined problem, the system's vector of weights moves quite
directly to the intersection region, using gradient descent. If trained
on either sub-problem, it moves to that sub-problem's region, but
not normally to the intersection region. If then trained on the second
sub-problem, it then moves directly toward the second sub-problem’s
region, but is not constrained to remain in the region of the first sub
problem, so it does not proceed to the intersection region. Only
training on examples from both problems will move the weight
vector toward the intersection region.

They and others (Hinton & Sejnowski 1986b, Hinton & Plaut
1987b) suggest that rehearsing previously learned information
during learning might mitigate forgetting. This may be what people
do. Another suggestion is to modify the learning algorithm so that it
learns without this forgetting; in terms of the example given above,
our modified learning algorithm would remain in the region of the
first sub-problem while moving toward the second sub-problem's
region, thus ending up in the intersection region. The algorithm
would therefore be somehow "keeping in mind" the association from

Neural Networks in Artificial Intelligence 117

the first set of stimuli. Unfortunately, these associations are not
learned explicitly, but in terms of the functional relationship between
their parts, so it is difficult for a connectionist machine to rehearse
associations.

2.29. Remembering Old Knowledge
McCloskey and Cohen’s work, and that of others, demonstates

the problem that it is hard for a network to learn something new
without erasing what it has previously learned. Hinton and Plaut
(1987b) deal with this problem by proposing that, for each
connection in a network, two connections be substituted, with a
weight on each of them. One of these would have a relatively rapid
learning rate—the "fast weight"—while the other would have a
relatively slow one. The slow weights would store the long-term
knowledge of the network, while the fast weights would function as a
short-term memory.

They propose a novel use of the fast weights in which the fast
weights are used not simply to hold new associations, but to "deblur"
the system. If the slow weights have come to reflect a set of
associations—the "old" set—and are then trained on a new set, they
will have a tendency—as McCloskey and Cohen have shown—to
forget the old set. Hinton and Plant have devised a scheme in which
the fast weights compensate for the changes in the slow weights so
that the old associations are still recalled. This is analogous to
deblurring in image processing: an algorithm is used to deblur an
out-of-focus picture, based on information on how far out of focus it
is. For Hinton and Plaut, he fast weights store this information.

They used a feed-forward network and back-propagation to
carry out their experiments. This network contained both fast and
slow weights with different learning rates. The overall weight of a
connection is simply the sum of the fast and slow weights. The fast
weights have a built-in tendency to decay to zero, so when the
network reaches near zero error they will decay to zero. In the
retraining, the fast weights retained information about the earlier
slow weights—i.e., how far they had been perturbed from their
earlier values.

Their task was to associate one 100-member set of 10-bit
vectors with counterparts in another set; the 200 vectors, and the
matches between them, were chosen at random, but were then fixed
for purposes of learning the associations. The network's slow

118 Neural Network Methods for Learning and Relaxation

weights were trained by multiple sweeps through the data. They
then trained the network on five new associations, until this new
knowledge was stored in the slow weights. They then retrained the
network on a portion of the original 100 associations. At the
beginning of this retraining, the rest of the old associations were
remembered almost as well as the portion used for retraining, even
if this portion was as low as 10%. Eventually, of course, the portion
used in retraining came to be recalled better. Hinton and Plant
account for this by noting that the information about the initial 100
associations is distributed across the entire pattern of the slow
weights, so that, as the network relearns, it is pushed back in weight
space toward the weight pattern representing the complete set of old
associations, which it has visited before. This is what Hinton and
Plaut call the transfer effect.

In order to understand the transfer effect, they choose a simple
problem of a three unit network with two input units and a single
output unit (see Figure 2.23). This network's weights are then
trained to learn two simple linear associations: w lx l + w2x2 = y
and w jx'l + w2x '2 = y'- This is represented by the point (w], w2)
in the two-dimensional weight space which is at the intersection of
the two lines in weight space corresponding to the two associations.
For either association, any point on the line corresponding to it in
weight space will do to represent the association; both associations
can be represented only by the intersection.

INPUT

OUTPU

W1X 1 + W2X2 = y constraint 1

w x’ + w X' = y' constraint 2
1 1 2 2

Figure 2.23. A network representing two linear constaints used by Hinton and
Plaut (1987b). Reprinted by permission.

Neural Networks in Artificial Intelligence 119

They consider what will happen if the solution is perturbed
some random distance from the solution point. This is analogous to
what occurs during the learning of the new associations. If, after
this perturbation, the network is retrained on only one of the two
associations, it will tend to make a "bee-line" for the line that
corresponds to that association. In Figure 2.24, the random
displacement is somewhere in the circle around the intersection
point. The two association lines divide this circle into four regions.

constraint 1

constraint 2

W2

Figure 2.24. Regions in the weight search space surrounding two linear
constraints. From Hinton and Plaut (1987b). Reprinted by permission.

Hinton and Plaut point out that if the displaced point lies in one
of the two larger regions of the circle, a movement in weight space
from the displaced point toward the line associated with one of the
associations will also bring the weights closer to the line representing
the other association. If the displaced point is in one of the smaller
two regions, such a movement will be toward one of the two
association lines and away from the other. But the displaced point is
more likely to be in one of the larger two areas. They extend this
point mathematically to show that in circumstances like those in their
simulation, the transfer effect occurs.

They note that as the point moves from one of the larger
regions towards the intersection point, the circle becomes an ellipse,
and the fraction of area corresponding to what was the larger area in
the circle is smaller in this ellipse. Therefore the transfer effect gets
smaller as re-leaming proceeds.

120 Neural Network Methods for Learning and Relaxation

2.30. Sequential Processing
Jordan (1986a) has applied connectionist models to sequential

tasks in cognition. While much of cognition seems intrinsically
parallel, such as the recognition of objects in a visual scene, many
tasks, such as speech production and understanding, are intrinsically
sequential. Nevertheless, even such a sequential task as speech
production, Jordan points out, exhibits a certain degree of
parallelism. This is evinced in phenomena such as co-articulation.
In co-articulation, the shape of the mouth and tongue during the
utterance of a particular phoneme will be influenced by a phoneme
that is to follow; Jordan gives the example of the word "freon", the
opening of the mouth that is required to pronounce the "n" can start
as early as the "e".

The formalism used by Jordan for expressing sequential
performance employs a sequence xj, X2 , ■■■, xn of actions taken by
the system. The x's, each of which is a vector, are stored, one after
the other, over time. That is, X2 replaces xj in the output units, then
x j replaces X2, and so on. There is also a static vector p, called the
plan. There is another vector sequence si, S2 sn, which is the
sequence of states of the system. At any given time step in the
operation of the system, the state vector is the "memory" of the
system, that is, the system's recollection of all the previous outputs it
had.

Jordan's network is
shown in Figure 2.25. In
order to compute a non
linear function of the plan
and state units to arrive at the
next output (action), a layer
of hidden units are present.
The layer of input and plan
units is completely connected
to the layer of hidden units,
which in its turn is
completely connected to the
layer of output units. As far
as we have described it, the network is completely feed-forward.

It also has some recurrent connections. Each of the state units
is connected to itself, and each of the output units is connected to the
state units. Thus both the previous state and the current output

Figure.2.25. Recurrent network of Jordan
(1986a). Reprinted by permission.

Neural Networks in Artificial Intelligence 121

determine the next state, as defined by the state units. A learning
algorithm such as error back-propagation is used to train the weights
in the system so as to produce the desired sequence of actions.

Generally, it is desirable that the state vector changes
continuously in time, that is, a pair of successive state vectors should
be similar to one another. For one thing, this makes the associations
between them easier to learn, since the state vector can simply flow
along a trajectory in state space. But the main reason for this
continuity requirement is to provide the kind of parallelism that is
illustrated by co-articulation. This parallelism means that there must
be aspects of the state vector that are "getting ready for" the next
action, and these are similar to what they will be on the next time
step.

As an example, Jordan considers the case where the learning
system must learn the sequence (1.0 * *) (* 1.0 *) (* * 1.0), in which
the state vector has 3 components and * indicates "don't care". In
this case, the system will likely learn a sequence such as (1.0 0.8 0.6)
(0.8 1.0 0.8) (0.6 0.8 1.0), since each state generalizes from nearby
states. This is similar to co-articulation. As more and more
components of the state vector are specified on each time step, this
parallelism becomes less possible, and learning takes longer.

Jordan observed that in the case of a system that learned a
sequence of states under this continuity requirement have a particular
property: that their learned states serve as attractors. That is, if one
of the states in a learned sequence is perturbed somewhat, to a
nearby point in state space, and this state is input to the system, the
system will correct the perturbation and get back to the correct
sequence, although this may take some time, and the correct sequence
may only be approached asymptotically. In the case where a system
has learned a number of independent cyclical sequences, each of
these sequences serves as an attractor for those states similar to states
in the sequence in question. This, Jordan notes, is a generalization of
Hopfield’s network, in which partial representations of states flow
into complete representations, called limit points, thus serving as a
content-addressable or auto-associative memory (see section 2.8) In
Jordan's system, the attractors are not points, but trajectories
through state space. Jordan uses the term attractor dynamics to
characterize the study of his class of systems.

Jordan applied this network formalism to the simulation of the
co-articulation data. He notes that his system can be viewed as a
discrete version of a continuous process; this has promise in the

122 Neural Network Methods for Learning and Relaxation

simulation of continuous sequential processes such as speech
articulation.

In related work, Rumelhart, Hinton, and Williams (1986c)
have extended the back-propagation algorithm to sequential data.
They use networks that have one layer for each time slice.

2.31.Image Compression Using a
Back-propagation Auto-associator
Cottrell, Munro, and Zipzer (1987) devised a method of image

compression that is based on back-propagation. Their method is
based on the fact that most real images contain large amounts of
redundant information. Their compression technique can be applied
to any redundant data file, not just images.

In their experiments, they used 8x8 pixel images, with 8-bit
pixel values ranging from 0 to 255. The system contained three
layers, with the input and output layers both being 8x8 images, and a
layer of 16 hidden units in between. The goal was to completely
represent the 64 bytes of information in the image in the 16 hidden
units. The network is feed-forward, with each layer being
completely connected to neighboring ones. For the purpose of back-
propagation, the desired output was the same as the input; thus the
network was an auto-associator.

The network was trained for 100,000 images, which were
patches drawn from a single, much larger image, with a learning
rate of 0.25, and then on an additional 50,000 patches, with a
learning rate of 0.01. This resulted in a "compression machine",
which yielded reasonable results on visual inspection (comparing an
image reconstruction from the compressed version with the
original).

In order to compare their results to more conventional
methods for image compression, they had to limit the hidden units to
having a fixed number of output values, so that they could measure
the relative number of bits in the compressed vs. the uncompressed
versions. There is a trade-off between image quality and
compression. There are two ways that the amount of compression
can be varied; by changing the number of hidden units and by
changing the number of possible output levels that the hidden units
might have (which the authors refer to as the quantization).

They compared their algorithm with a standard compression
algorithm, the principal components transform (PCT). This

Neural Networks in Artificial Intelligence 123

transform is based on multiplying the vector of elements
representing the uncompressed image by a matrix so as to transform
the coordinates in which the vector is represented to ones that display
the maximum variance along their axes, thus removing correlations
between pairs of coordinates. To decompress, the inverse matrix is
used.

In both the PCT method and their method, they note, the
resultant image can be viewed as a linear combination of basis
images (since the hidden units tend to have inputs that stay in the
linear ranges of their sigmoid activation functions). In the two cases,
though, the set of basis images are different.

Cottrell and his co-workers argue that their system is an
example of a new programming style, called extensional
programming. This term simply indicates that the network was not
explicitly programmed to solve the problem (of compression), but
rattier it learned by example. They note that, because a linear
solution was found, it was not necessary to use a non-linear system,
although they found that the non-linear system generalizes better to
novel images. They feel that their technique may be better than the
PCT method in certain circumstances, such as in the case in which
there is a noisy channel for the transmission of the compressed
image, because the variance in the image is better distributed among
the various components of the compressed image than it is in the
PCT compressed image, so loss of one or two important components
of the PCT can cause substantial degradation in the image.
2.32. Representing Recursive Structures

in Connectionist Networks
Many of connectionism's critics (e.g., Fodor and Pylyshyn, see

section 1.9) have argued that recursive symbol structures, such as
trees, lists, and stacks, are essential to any theory of cognition,
including a connectionist one. For instance, many linguistic rules are
recursive, such as

NP <—NP PP

which says that a noun phrase may be generated by taking another
noun phrase and appending a prepositional phrase to it. This leads to
an infinite variety of linguistic constructions such as "the woman",
"the woman with the binoculars", "the woman with the binoculars at
the zoo", etc.

124 Neural Network Methods for Learning and Relaxation

Touretzky (1986) shows how such recursive structures may be
implemented in a connectionist network. He takes the title of his
system from the Boltzmann machine (Ackley et al. 1985; see section
2.10), which is the particular neural network type that he used to
implement his system, and the LISP operation CONS, which is used
to recursively CONStruct a list out of two lists or atoms, and is the
basic list-constructing operation in LISP. Each CONS operation
creates a CONS cell, which is a record containing two pointers, one
to the CAR, and one to the CDR (the names CAR and CDR come
from old IBM mnemonics, which no longer have any significance).
These CONS cells, as any introductory computer science student
knows, can be used to construct many dynamic data structures, such
as binary trees, stacks, and linked lists. For an introduction to LISP,
see (Wilensky 1986).

Touretzky takes off from his and Hinton's design for their
connectionist production system interpreter, DUCS (see section 3.2),
in his design of BoltzCONS. As in the production system network,
there are 25 distinct symbols, and each unit in the system is sensitive
to six symbols in each position of a triple of symbols; thus each unit
is receptive to 6^ triples out of the 25^ possible.

The BoltzCO N S
System is divided into 5
modules, as shown in Figure
2.26. The CONS memory is
used to store all of the CONS
cells. Each CONS is
represented by a triple (tag
car cdr), where each of tag,
car, cdr is one of the twenty-
five symbols supported by the
system. Each CONS cell has
a unique symbol associated
with it; thus the system can
represent only 25 CONS cells
at once, or less if some of the symbols are considered to be atoms,
which are stand-alone symbols that do not denote any CONS cell.

Many triples are stored in CONS memory; the CONS pullout
network is used to select one triple from the memory. Three
winner-take-all networks are used to store the symbol from each of
the three symbol positions; these are called (naturally enough) the
tag, car, and cdr networks. Each of these is identical to a bind space

Figure 2.26. The BoltzCONS system
(Touretzky 1986). Reprinted by permission.

Neural Networks in Artificial Intelligence 125

in the production system network. The representation of symbols in
these bind spaces is itself distributed; each symbol is represented by a
unique pattern of activation across the bind space. Each unit that
participates in the pattern for a particular symbol, say x, is positively
connected to a random subset of the units in car pullout space that
participate in the representation of x in the particular position in the
triple corresponding to which bind space we are talking about: in the
case of the tag space, the first position; in the case of the car space,
the second position; and in the case of the cdr space, the third
position.

Touretzky gives the example of a stack represented by the
triples (p a g) (g B r) (r C s) (s D nil). Note that the first symbol of
each triple is the same as the last symbol of the previous one; this
provides the links between stack elements. To pop the top element
off the stack, the symbols p, A, and g are loaded into the tag, car and
cdr spaces respectively, and the triple (p A g) is represented in the
CONS pullout space. The triple (p A g) is removed from the CONS
memory by activating gated inhibitory connections between
corresponding units in the CONS pullout space and the CONS
memory. The CONS pullout space and the CONS memory have the
same structure, except that, because of inhibitory connections, the
CONS pullout space can represent only one triple at a time. In order
to move the triple (g B r) to the top of the stack, that is, into the
CONS pullout space, the activation pattern corresponding to the
symbol g is clamped into the tag space, and then simulated annealing
(see section 2.10) is run on the CONS pullout space and the three
bind spaces to find a minimum energy state. There are excitatory
connections from units in the CONS memory to corresponding units
in the CONS pullout space. This annealing causes the triple (g B r)
to move into the CONS pullout space, since it is the only triple that
has g as its first symbol.

In order to push a new symbol on the stack, say E, Touretzky
chooses a new "pointer" symbol, say t, copies the tag space to the cdr
space, and puts t into the tag space and E into the car space. The
combined influence of these three spaces—if, for example, (g B r)
was formerly on top of the stack—causes the triple (t E g) to move
into the CONS pullout space, and then via gated excitatory
connections, to move into the CONS memory.

Having shown how to implement stack operations, Touretzky
moves on to trees. The main difference between BoltzCONS and
ordinary LISP is that BoltzCONS has the ability to follow pointers

126 Neural Network Methods for Learning and Relaxation

backwards. For instance, Touretzky gives an example of a tree in
which the root is (v w y) and its two children are (w A x) and (y D
E). If you are at either of the children of the root as you traverse
this tree, it is possible to get back to the root. For instance, if you
are at (w A x), you know that w must be the car or the cdr of the
parent; it may take two attempts to find the parent node, in which w
is loaded into the cdr and cdr spaces, one at a time, to find the
appropriate triple, but BoltzCONS can find it. Touretzky shows that
is possible to implement a tree traversal in terms of BoltzCONS
operations alone, without using an auxiliary stack, which a
conventional implementation of a tree traversal would require, since
a tree traversal is a naturally recursive operation, and recursive
operations require a stack.

In the initial implementation of BoltzCONS, a program in
LISP controlled BoltzCONS's operations, such as clamping a space
(holding its activations constant, at fully activated), starting
annealing, etc. in the spirit of making the system completely
connectionist. Touretzky implemented the control module as a
connectionist network as well, using his and Hinton's (1985)
production system interpreter, DUCS, suitably modified. The
sequential nature of the control module is implemented using a set of
production rules that execute in sequence.

Touretzky argues that systems like BoltzCONS and the
connectionist production system interpreter, DUCS, are interesting
not because they can compute solutions to problems that Turing
machines can't, but because they can compute them in a way that is
biologically plausible in that they use distributed memory and
massive parallelism to solve constraint satisfaction problems.

Touretzky also notes that the modules employed in BoltzCONS
and in DUCS, that is, bind spaces, pullout networks, and distributed
representations of symbols, are generally applicable to symbol
processing in the connectionist paradigm. For Touretzky's more
recent connectionist work, much of it in the same vein, see
(Touretzky 1989a,b,c).

3
Production Systems and

Expert Systems

3.1. Introduction
Work in the development of connectionist rule-based systems,

which can be used to simulate expert performance, can be divided
into two areas. The first type of work, exemplified by the work of
Touretzky and Hinton (1985) , simulates the firing of rules, as in a
production system. The second type of system, such as that
developed by Gallant (1988), or that of Saito and Nakano (1988),
uses a neural network learning algorithm, such as error back-
propagation, to learn relationships between inputs and outputs; these
relationships are normally considered expert knowledge. For
instance, the inputs might be configurations of symptoms and the
outputs might be diseases. As has been done with many symbolic
expert systems, both Gallant, and Saito and Nakano, use a medical
domain to demonstrate the expert capacities of a neural network.
The network, once trained to exhibit expert knowledge, can be
examined and rules can be extracted from it, based on correlations
between particular inputs and outputs. ■

The work of Gallant, and that of Saito and Nakano, illustrates
the applicability of connectionist systems to expert systems. Since no
rules need be explicitly programmed into a connectionist expert
system, the development time of such a system is substantially
reduced from that required for a traditional symbolic rule-based
system, in which the process of discovering rules is slow and
painstaking.

The work of Touretzky and Hinton is interesting not because
of its practicality for use as a tool to implement an expert system, but

128 Production Systems and Expert Systems

because it illustrates how a rule-based system can be implemented in
a distributed connectionist system. In this it is similar to Touretzky’s
BoltzCONS (see section 3.2), which shows how a LISP-like system
may be implemented in a connectionist network.

In the following sections we discuss the systems of Touretzky
and Hinton, of Gallant, and of Saito and Nakano in detail.

3.2 . A Connectionist Production System
Touretzky and Hinton (1985) consider the problems of pattern

matching and variable binding within the connectionist paradigm.
These operations are critical to implementing a standard AI
production system. They devised their system partly to respond to
criticisms that connectionist systems were unable to deal with
standard symbolic stimuli as encountered in AI. These criticisms
have been effectively been taken care of by their system and others;
the debate has shifted to whether or not connectionist systems are an
efficient mechanism for implementing such standard AI symbol
processing systems such as production systems.

They use a distributed connectionist system, which they call
DUCS, consisting of binary threshold units. They use rules of the
form

(F A A) (F B B) +(G A B) -(F A A) -(F B B)

This rule can be interpreted as follows: replace the triples (F
A A) and (F B B), if they are present in the working memory, with
the triple (G AB). In the second version of their system, they added
variables to the first position of a triple in a rule if the triple
appeared on the left side of the rule.

Their system is comprised of five groups of cells. The main
one of these is the working memory. There are two "clause spaces"
called C l and C2, and each holds a single triple. There is a space
representing the production rules, and another space representing
the variable bindings.

The system behaves like a standard production system, which
repeats a recognize-act cycle over and over; recognizing the left
side of a rule, and taking the action specified on the right side of that
rule. In the recognize phase, cells in working memory influence
cells in the Cl and C2 clause spaces, and the rule and binding spaces.

Neural Networks in Artificial Intelligence 129

Relaxation takes place until a state that corresponds to a match is
achieved.

The working memory represents triples of symbols. They
have chosen to represent 25 different symbols. They preferred a
distributed representation using coarse coding to a local one. The
latter would have required 25^=15,625 distinct neurons. Their
representation requires 2000 cells, each of which responds to
6^=216 triples, because each cell responds to six randomly chosen
symbols in each position of a triple. Because the cells recognize
2,000x216=432,000 triples, each triple is recognized by
approximately 432,000/15,625*28 cells. Thus each triple is
represented by a pattern of activity over about 28 cells. A triple is
stored by activating all of the cells that are receptive to it.
Conversely, a triple is present if all but a few of the cells that are
receptive to it are activated. The system is relatively insensitive to
noise, in that a few cells can be missing from the representation of a
triple and the triple would still be considered to be present in
working memory. This is necessary, since it is essential that one be
allowed to remove triples from working memory as well as add
them. The problem with removing triples is that a given node can
serve in the representation of more than one triple. TTiis is why it is
not required that all the nodes associated with a given triple be
activated in order for that triple to be considered present, because
some of its nodes could have been deactivated as the result of the
removal of other triples from working memory.

Note that, since coarse coding is used, when many similar
triples are stored, the system is unable to tell which of them is in
fact present.

The two clause spaces Cl and C2 each has exactly the same
number of cells as the working memory, 2,000. Each cell in the
spaces is connected to a corresponding cell in working memory.
Thus C l and C2 are structurally identical to working memory,
except that the cells in clause space inhibit one another in such a way
so as to limit the total number of cells in the space that can be
activated at the same time to 28. This is because each space is
designed to hold only one triple at a time. Since the rules have two
antecedents each, the idea is that the two triples on the left side of
the rule come from the two clause spaces, one from each space.

Rules are represented in a distributed manner; each rule is
represented by a collection of 40 rule cells. Each rule cell is

130 Production Systems and Expert Systems

positively connected to the clause spaces. If triples 77 and T2 are
the two triples on the left side of the rule X , then each of the 40 rule
cells of rule X are connected to a random subset of the cells
representing 77 in the C l clause space, and to an equal number of
randomly selected cells that represent T2 in C2. The 40 cells
comprising the rules form a clique. Cells inhibit cells outside their
clique. Thus the rule space is a winner-take-all network; after the
network settles all the cells representing a single rule will be
activated, and no others. They chose a distributed representation for
rules partly so that if two rules match, the one that matches more
strongly would be activated.

The rule cells perform the rule by being connected to cells in
working memory that represent the triples that the rule takes action
on. If the rule inserts a triple into working memory, each node
representing the rule is positively connected to a random subset of
the cells representing the triple in working memory. If it deletes
them, then the connections are negative. The system is set up so that
the rule firing connections are gated; that is, the rules are not
allowed to take any action until a single rule has settled into place.
Touretzky and Hinton can show that each phase, rule recognition
and firing, corresponds to Hopfield energy minimization (see section
2.8).

In order to handle variable binding, they use another set of
cells called bind cells. There are 25 possible values that a variable
can take on, since there are 25 distinct symbols that the system
recognizes. As in the rule space, each symbol is represented by a
clique of 40 cells. Each of these cells is connected to a random
subset of all the nodes in Cl and C2 that have that particular symbol
in their first position. If the clause spaces settle into the
representation of two triples, each of which begins with the same
symbol, then the bind space will settle into a state in which the nodes
representing that symbol are activated. In order for the system to
work properly when variables are allowed, the rule cells must be
given larger receptive fields, because a rule antecedent that contains
a variable has a larger number of possible triples that it can match.

One problem with their system is that it doesn't allow for
conflict resolution; that is, it cannot deal with the situation in which
more than one rule is ready to fire at a given time. All standard
production system interpreters provide some form of conflict
resolution. If such a conflict occurs, DUCS will not function
properly. This is a serious limitation. However, the system, like

Neural Networks in Artificial Intelligence 131

many other connectionist systems, is subject to crosstalk, whereby
many weakly activated rules may cause a triple to incorrectly enter
the clause space, and cause the wrong rule to be activated.

In a simulation, their system is much, much slower than an
standard symbolic production system interpreter such as OPS5
(Forgy 1981). If it were built in hardware, it would be much faster,
probably comparable in speed to OPS5 running on a conventional
computer. The point of their work, however, was to show that
connectionist systems can handle very general form of symbol
processing, not that they can do it more efficiently than conventional
systems. Their system has properties that are more human-like than
a conventional system, such as graceful degradation of performance
if the working memory gets overloaded.

Another disadvantage of this system, as opposed to standard
systems, is that the rules have to be wired into the system, as
opposed to being fed in as data. An interesting extension of this
work would be a system that learns production rules, which is
effectively what is done in the work described in the next two
sections, although rules are not represented explicitly.

3.3. Saito and Nakano's Connectionist Expert System
Saito and Nakano (1988) applied a connectionist network to a

problem in medical diagnosis that has been traditionally within the
area of application of rule-based systems. They use a three-layer
feed-forward network to represent the diagnostic information. It
has 216 input units, which are divided into small sets, each set
corresponding to a question given to the patient; for each possible
response to a question one of the input units in a set corresponding
to that question is active. The middle layer consists of 72 hidden
units; the output layer uses 23 units corresponding to the 23 diseases
that the system knows about. Each of the layers is completely
connected to each unit in the layer above it.

For the purposes of training the network, 394 patient records
were utilized, in which the output disease was given, as well as all
the diagnostic data. Back-propagation was used to train the system.
After the training period, the network responded "perfectly" to an
additional 300 cases. They defined a perfect response as one of the
output units responding with an activation greater than or equal to
0.75, and all the others responding with activation less than 0.25.
Note that a perfect response, as they define it, is not necessarily a

132 Production Systems and Expert Systems

correct one; it is just one in which a single unit is responding. It
would be surprising if the network achieved a percentage of correct
diagnostic responses that is significantly better than that given by
expert physicians.

Saito and Nakano define two measures of the system,
precision and recall. Precision is the ratio of the number of diseases
that the system diagnoses correctly to the total number of diseases
that it diagnoses, and recall is the ratio of correctly diagnosed
diseases to the actual number of diseases present in the patient.
Their system gave a recall result of 0.54 and a precision result of
0.21; this is based on the (low) threshold for a disease being present
of 0.25. This low value biases the system in favor of recall, with a
loss of precision (many inaccurate diseases are diagnosed).
Accuracy was defined as the fraction of diagnoses in which one of
the diseases diagnosed was actually found to be present in the
patient. Their system had an accuracy of 67%. A symbolic expert
system programmed to handle the same task achieved accuracy of
about 70%. Of course, these numbers are not really useful for
comparing symbolic vs. connectionist expert systems, since they are
implementation-dependent.

The expert neural network can be viewed as a source of
information for knowledge acquisition. Knowledge acquisition has
been long recognized as a "bottleneck" in the construction of expert
systems; although expert behavior may be rule-governed, it is
notoriously difficult and time-consuming to determine what the
rules are, and what the relation factor (RF) relating antecedent and
consequent of each rule may be. (The RF is a number that quantifies
the strength of the association.) If it is possible to extract RFs both
from a connectionist network and from interviewing experts, then
the best of both worlds could be built into a system, resulting in a
system with maximal performance.

Saito and Nakano define two methods for determining the
RFs. In the first method, the output of a node representing a disease
D is given by B(D), when no symptoms are input (zero input
vector), and A(S,D) if only the input node corresponding to
symptom S alone is activated, and no others. In this case, RF](S,D)
= k](A(S,D) - B(D))y where k1 is a constant. This formula
measures the effect of a single symptom on the presence of a given
disease, ignoring the effects of other symptoms. The second
estimate is given for an actual set of patients. Here C(S,D,P) gives
the change in the output value of D when patient P 's symptom S is

Neural Networks in Artificial Intelligence 133

switched from 1 to 0 and defines the sum of the C’s over the patients
as

sum(SJD)=£ C(S,D,P)
p

Saito and Nakano let N(S) be the number of patients for which
this has been done. They define RF2(S, D) = k2(sum(S, D)/N(S)),
where k2 is a constant. Thus this measures the average effect that S
has on D in an actual patient set.

RFs relate only single symptoms with single diseases, and
cannot represent non-linear or conjunctive relationships between
symptoms of diseases. To cope with this problem, Saito and Nakano
invented a method for extraction of rules from their neural
network. They did this by considering sets of symptoms, setting all
the symptoms in such a set "on" in the neural network, and then
seeing if a given disease D is activated. If it is, then a rule of the
form: if D then (set of symptoms) is generated. If, at this point,
activation of a second set of symptoms causes D to be de-activated,
then the rule is modified to : if D then (set of affirmative
symptoms)(set of negative symptoms).

Since for n symptoms there are 2n sets of symptoms, one must
find a way of considering only a small subset of this power set, to
avoid combinatorial explosion. They restrict their sets of
affirmative symptoms to symptoms that are found in conjunction in
actual patients, and sets of negative symptoms to symptoms that are
all absent together in actual patients. Secondly, Saito and Nakano
restrict the size of the symptom sets that can occur; in their example
of role extinction they limited the size of the affirmative symptom
set to three and that of the negative symptom set to a single
symptom. Using the 216 input nodes representing symptoms of the
network described above, they extracted 443 rules about the single
disease muscle contraction headache, of which 303 were affirmative
rules and 140 were negative rules, such as "if (muscle-contraction
headache) then (the headache continues all day long)" and "if (not
muscle contraction headache) then (previous headache has happened
more than 3 years before) and (when the headache is serious it is too
severe to hear)". Physicians to whom they showed the rules thought
that they made sense and were reasonable. An enormous number of
rules can be extracted by this method.

134 Production Systems and Expert Systems

These rules, once they are extracted, can be used to confirm
patients' symptoms, to extract symptoms that patients are only
partially conscious of, and to reject symptoms that are the result of
errors made by patients in the course of answering a questionnaire.
Saito and Nakano have automated this confirmation procedure as a
feedback loop between diagnosis and confirmation, which iteratively
improves the quality of a diagnosis.

3 .4 . Gallant's Connectionist Expert System
Like Saito and Nakano, Gallant (1988) developed a

connectionist system which deals with a specialized domain in
medical diagnosis, acute theoretical diseases of the sarcophagus.
There are nodes in three layers corresponding to each symptom
(layer 1), disease (layer 2), and treatment (layer 3) that is relevant
to this domain; the nodes are 3-valued, with 1 denoting the
activation of a disease, symptom, or treatment, -1, the de-activation
and 0, the absence of knowledge. Connections between nodes reflect
dependencies between pairs of three types of nodes. There are no
cycles in the network. Additional cells were added between the
input cells (symptoms) and layers 2 and 3 to increase the
computational power of the network. The cells are threshold cells
that take value 1 if their total weighted input is positive, -1 if it is
negative, and 0 if it is zero. There are cells intermediate between
each adjacent pair of layers. Gallant uses a learning algorithm that
he calls the pocket algorithm

The pocket algorithm is a variation on the perceptron learning
procedure. The basic idea behind the pocket algorithm is that for
each vector of weights impinging on an internal or output node,
there is another vector in your "pocket" as it were. Over the course
of training, if the vector of weights results in a longer string of
correct classifications than the vector of weights in your pocket, then
you replace the pocket weights with this vector. Each internal or
output node u is trained independently, and it is presumed that a set
of pairs Ek, C& is used for training, where Ek is a vector of the
activations of the nodes that are inputting to u and is the
activation of u, all on the £th iteration. After each iteration, the
weight vector P is modified by the formula P'= P+Ekck, to move
it closer to the current pattern of activation. In the case of two
output values and a weight vector P, a correct classification is when
P*Ek > 0 and C^= 1, or when P*Ek < 0 and C^=-1.

Neural Networks in Artificial Intelligence 135

The pocket algorithm is not guaranteed to converge to good
performance, but it does monotonically improve performance by
always successively selecting better sets of weights.

The connectionist inference system that Gallant has developed
is called MACIE (for Matrix Controlled Inference Engine), because
Gallant uses a matrix to represent his weights. It reasons on the basis
of incomplete information. Any node ak in the system representing
a disease or treatment is dependent on, and therefore receives input
from, a set of nodes lower down. Some of these nodes—let us refer
to them as u(—have known values, and some of them—vj—have
unknown values. It is often possible to reach a conclusion about the
value of a node in the system in a given situation. If the maximum
amount of output that the unknown nodes could be giving,

MAXUNKNOWN=£ wjk
j

is less in magnitude than the amount of input that the known nodes
are given, which is

K N O W N = £ wikUi
i

then the unknown nodes cannot change the sign of KNOWN, and
therefore the value can be set to 1 if KNOWN is positive, and -1
otherwise.

He also computes, for each node, the confidence that it will be
eventually activated. For known cells, the confidence is defined as
simply the cell's activation. For unknown input cells, the confidence
is zero (nothing is giving us any information about their status).
For other unknown cells, the confidence is defined as the weighted
sum of the confidences of all the cells impinging upon a given
unknown cell (computed one level at a time, from the bottom up),
normalized by the total weight attached to unknown cells:

X wijConf(Uj)

' I W„
j, Uj unknown

This is just one of many possible heuristics.

136 Production Systems and Expert Systems

As in all expert systems, it is useful to know what additional
data to gather in order to clarify the value of an unknown variable.
For instance, if there is a collection of output variables, none of
which has been verified or falsified (possibly representing diseases
or treatments), the system selects the variable u among these with
the highest associated confidence. It then repeatedly searches
backward in the system through the layers, starting with w, at each
layer choosing the unknown variable with the largest weight
connection to the variable in the layer above. Eventually, in this
fashion, an input variable is reached, and data can be gathered on the
value of this input variable. This information is then fed forward
through the layers of the system, and it may resolve the value of the
output variable in question. If not, the whole process is repeated.
This technique may be used to prove or disprove hypotheses, or
both. It is a connectionist implementation of the back-chaining
technique normally used in expert systems. The system also allows
the user to enter "unobtainable" to a request for information, and
then that node's value is marked as permanently unknown.

Like Saito and Nakano's system, Gallant's system also explains
its behavior by extracting rules from the network as follows. For a
given node all the nodes with known values uj directly affecting
it are considered in order of the absolute value of the weight wij on
the connection between i and j. For instance, node u.5 (state 1)
might receive input from nodes uj, u2 , u3, and 114, with states 1, -
1, 1, -1 and weights -3, 6, -5, 4 respectively. Nodes u2 and u3
would be chosen to participate in the rule because their absolute
weights are largest and the sum of their absolute weights (11)
exceeds the sum of all the remaining weights (7). The following
rule is therefore formed: if ((not u2) and u3) then u5. This, of
course, is just one of the many rules that might be formed, but it has
the advantage of selecting a set of decisive variables. The rules so
generated were judged to be reasonable by physicians.

The system, like that of Saito and Nakano, achieved
performance of about 70% in making the correct diagnosis in an
application that detected causes of infantile diarrhea. Experts
achieve roughly the same performance. Gallant has applied his
system to a variety of domains.

Gallant states that his system is not a model of human
reasoning: rather it is designed for practical use. He views his work
as providing a framework for knowledge engineers to use in
building expert systems: he believes that the engineers need good

Neural Networks in Artificial Intelligence 137

knowledge of connectionist principles in order to use such tools
effectively, and that connectionist approaches to knowledge
engineering can not "automate away" the knowledge acquisition
process.

One interesting extension of such attempts at connectionist
expert systems would be to integrate them with connectionist
attempts at knowledge representation that embody such properties as
inheritance (see the next chapter). This would be in keeping with the
general trend in research on expert systems toward modelling the
domain-specific knowledge of an expert in a way that reflects the
structure of the system that the expert is dealing with. For instance,
an expert system for kidney disease would incorporate a model of
the kidney's structure and function. For a discussion of these issues,
see Patil (1987).

4
Knowledge Representation

4.1. Introduction
Work in knowledge-representation in connectionist systems is

closely related to that in natural language understanding, the topic of
chapter 7. Connectionist attempts at knowledge representation must
succeed at embodying some sort of structured data object or set of
objects in a system. For early discussions of how this might be done,
see Minsky (1977) and Hinton (1981a).

There are many approaches to this. Some of them are
distributed, like Touretzky's DUCS (1985), in which each concept is
represented by a pattern of microfeatures. Others are localist, such
as Shastri's (1988), in which single nodes are associated with
concepts, and the casual relationship between concepts is represented
by the strength of connections between them.

One way of thinking about the difference between distributed
and local methods of knowledge representation is that distributed
representations handle the set containment relation by having the
subsets (microfeatures) form parts of a superset's representation,
whereas local representations handle the same subset-superset
relation by connections between local nodes. The former approach
is taken in the work of Touretzky on representing schemata in a
neural network. The latter approach is taken in the work of Shastri
on knowledge representation.

Inheritance of features of classes by class members is
implemented in connectionist networks by Shastri and by Dolan and
Dyer. Minsky (1977) and Hinton (1981a) have also done work in this
area.

Neural Networks in Artificial Intelligence 139

4.2. Storing Schemata in Neural Networks
One of the first efforts to embody structured knowledge

representations—often known as schemata—in neural networks was
made by Rumelhart, Smolensky, McClelland, and Hinton (1986f).
They represented in the network information about five different
types of rooms—a kitchen, office, bedroom, bathroom, and living
room. There were forty room descriptors, which were items one
could find in one or more of these rooms. They interviewed subjects
on each of the rooms and asked for each of the descriptors, asked
whether that descriptor was likely to be found in that room. For
each room, 13 subjects judged each descriptor. This allowed the
estimation of probabilities that room descriptors co-occur. Note that
certain descriptors were characteristic of all rooms—for example,
ceiling, walls, and floor—while others were highly specific to
particular room—for example, stove, toilet, and bed. Once the co
occurrence probabilities were estimated, they were used to set the
weights in a completely connected neural network of 40 units
representing the room descriptors in the following manner:

P(xt = 0 &xj = 1) P(xi = 1 & Xj = 0)
WV ~ ' n P(xi = l & x j = l)P(xi = 0 &Xj =0)

where xi and xj are the binary activations of descriptor units i and j
respectively and wij is the weight connecting them. This formula is
derived from probability theory and estimates the co-occurrence
probability. Each unit has a bias equal to

-ln(P(xi=0)/P(xi=l))

This measures the degree to which a unit is on; if it is often on, this
number is negative; if often off, it is positive.

They performed a Hopfield energy-minimizing relaxation on
the network (see section 2.8) by clamping the value of one of the
forty descriptors. Out of the 2^0 possible states of this (binary)
system, they found that the system always settled to one of five states
corresponding to the room that is most associated with that
descriptor. None of these five schemata is explicitly represented in
memory; they are emerge as patterns in the correlations between
pairs of microfeatures.

140 Knowledge Representation

There were also subschemata within these schemas: smaller
bits of related microfeatures, such as floor lamp and easy chair, desk
and desk chair, window and drapes. If one of these pairs is present
in the network, but not the other, the Hopfield energy is higher than
if both are present. Rumelhart and his co-workers describe gradient
descent in terms of a function, the goodness-of-fit function, that is
the Hopfield energy function inverted; it is high when the Hopfield
energy is low and vice versa. They plotted this goodness-of-fit
function for those states in the intersection of a plane formed by
three maxima (rooms) in the state space and the forty-dimensional
state space of the network. If the "goodness" function sagged deeply
between the maxima, this meant that rooms in between these maxima
were not very good rooms at all, whereas if the goodness function
looked more like a plateau, this meant that intermediate rooms were
plausible. Explorations of goodness "landscapes" in this fashion
indicated, for instance, that intermediate rooms between bathroom
and office were not very good rooms, but intermediate rooms
between bedroom, living room, and office are much better, as one
might expect.

This implementation of schemata differs from that of
Touretzky (see section 4.3) and Dolan and Dyer (section 4.4) which
more explicitly treat schemata like Minsky's frames, each of which is
as a collection of slot/filler pairs. The schemas of rooms in
Rumelhart and co-workers' work are more simply collections of
microfeatures.

4 .3 . Storing Frames in Neural Networks
Touretzky (1987) in his paper "Representing Conceptual

Structures in a Neural Network", tackles some of the issues involved
in connectionist approaches to knowledge representation. A classic
knowledge structure in AI, the frame, consists of a series of slot
names and slot fillers. For instance, Touretzky gives as an example
the frame representation of the sentence "Down by the henhouse,
John threw a rock at the fox." which is:

Agent: John
Verb: Throw
Object.Rock
Destination :Fox
Location: Hen House

Neural Networks in Artificial Intelligence 141

In his scheme, both slots and slot fillers are represented as bit
vectors. Each bit in the vector represents a microfeature. Touretzky
does not go into the semantics of these microfeatures, except to say
that they are primitive, but he notes that similar slot names and
fillers should have similar patterns of microfeatures.

His scheme is called
DUCS, for D ynam ically
Updateable C o n cep tu a l
Structures. It allows one to
store multiple slot-filler
relationships in a structure
called the concept buffer.
The architecture of DUCS is
shown in Figure 4.1.

Traditional approaches
to knowledge representation
in the connectionist paradigm
involve local representations

— 2F—«-
Figure 4.1 The architecture of DUCS
(Touretzky 1987). Reprinted by Permission.

for each slot and filler; the
relationships are given by the weights of the connections between
local nodes. In order to retrieve several slot-filler relationships,
copies of the entire network have to be made.

DUCS gets around this by having concepts be patterns of
activity in a structure called a "concept buffer". Multiple selectors
can be attached to this buffer to pull different slot-filler
relationships from it.

Concepts, in DUCS, can have an arbitrary number of slots.
Performance degrades as slots are added and the available units
become saturated.

In addition to concept buffers, which hold individual concepts,
DUCS also contains a concept memory, which can hold several
concepts at the same time. Individual concepts are retrieved from
the concept memory by activating several of the concept's slots at
the same time so as to uniquely identify the concept.

The selectors perform a dual purpose: they allow you to store
and remove additional slot-filler associations, and also retrieve
associations—that is, if you give one of a slot-filler pair, the
network will supply the other.

Slot names are 2N-bit vectors, the first N bits being the values
of N binary-valued microfeatures (one means the microfeature is
present, zero means it is absent), and the second N bits being the

142 Knowledge Representation

complement of the first N. This is to allow for some redundancy in
the representation, since in DUCS's storage scheme there is the
possibility that two or more patterns may try to use the same node.

The slot fillers are 2F bits long, F being the number of
microfeatures in the fillers. They are represented in the same way as
the slot names. The selectors are 4Fx2R rectangular arrays of units,
where R is a parameter of the system ranging between 0 and N. The
degree of overlap between associations and thus the rate of errors in
making associations is dependent on R and on the number of
associations that are stored. To record the association between filler
v (expressed as a bit vector) and slot name a, a pattern is stored in
the selector units. For each bit v; in v, one bit is turned on in the
same column in the selector array, and also a bit is turned on in
column i+2F. Which bit—k—in a given column is turned on is
based on a randomly selected R-bit subset of the slot name vector a.
The subsets are randomly chosen, but wired into the selector, one
subset per column. Each subset can be interpreted as an R-bit binary
number, to determine k. Positive connections are then made between
the #-bit subsets and the &th bit in the column. All the bits in a given
column inhibit one another, to form a winner-take-all network.

DUCS uses non-linear Hopfield-Tank units with symmetric
connections, (see section 2.9) These units have variable gain, so that
they do not initially rise very much in activation, but the gain rises
after they receive some activation, and they become saturated after
20 activation updates.

The creation of a slot-name-filler association creates a pattern
in the selector. All the bits in the selector are then copied to the
concept buffer in the same places; the concept buffer is the same size
as the selector. The concept buffer's contents is then used as input to
the concept memory. The concept buffer serves as a connector
between the concept memory and the selectors.

The concept memory is an associative memory following
Willshaw (1981). (see section 2.7). Willshaw's net is useful for
storing associations between binary vectors. In this case, each
concept is viewed as a one-dimensional vector of length 4Fx2R and
Willshaw's memory is used as an auto-associator to complete
incomplete patterns. Incomplete patterns are created in the selector
units by presentation of one or more slot name/filler pairs. These
patterns are copied to the concept buffer, which in turn uses the
concept memory to retrieve the concept.

Neural Networks in Artificial Intelligence 143

When a particular pattern is clamped into the slot name units,
the combination of the activation from these units and from the
concept buffer causes the selector units to become activated. This
process works even if there is not exactly correct input on the slot
name, because there is redundancy in the representation of the slot
filler. Since each bit is redundantly represented four times in the
code for the filler, and since each of these bits is associated with a
different R -bit subset of the slot name, and since these subsets, if
R < < N , are likely to be disjoint, an error in the slot name will
probably not affect more than one of the subsets. Since each column
unit in the selector array that is activated by a particular bit in the
slot filler is connected positively to all the other three bits that are
also activated by that slot filler, if one of the bits is not turned on,
and another bit in its column is turned on instead, due to an error,
the other three bits will activate it to such an extent so that that the
original bit will win out over the other activated bit in the column.

For instance, Touretzky gives the example of trying to
retrieve the value of an elephant's "trunk" slot using the pattern for
"nose". The slot name pattern "trunk" will most likely replace the
name "nose", because there is no slot for nose, and so trunk's filler
will be retrieved, and it will reinforce the pattern for trunk.

Of course, the weights have to be set in such a way so that this
works properly. All the weights in DUCS are set in advance, and are
based on various parameters of the model, such as F, R, and N. Thus
updates involve only changes in activation. Connections are
symmetric; that is, if node a is connected to node b, a reverse
connection exists as well. There are inhibatory connections between
a slot filler bit v/ and the bit vi+f which represents its complement;
similiarly, there are inhibatory connections between a slot name bit
ai and ai+N. There are exhitatory connections between a bit in the
selector and the corresponding bit in the concept buffer. Each bit in
the selector is also, as mentioned above, positively connected to R
bits in the slot name. Each selector bit in column i is positively
connected to the slot filler bit in that column as well as the
redundant representation of that bit in column i+2F, and negatively
connected to the complementary bits in columns i+F and i+3F. All
the selector bits in a particular column inhibit one another, since
only one of them should be activated after relaxation. Relaxation
leads to the multiple satisfaction of all the constraints embodied in
the foregoing connections.

144 Knowledge Representation

DUCS is, as a Touretzky points out, a two level architecture.
At the bottom level, slot names are used to retrieve fillers; at the top
level, slot name/filler pairs are used to retrieve concepts, consisting
of whole frames. Both of these processes are basic to a frame-based
view of cognition. Touretzky contrasts his approach to that of
Derthick (1987), in which constraints between microfeatures
composing filler or names are built-in; for instance, the presence of
the microfeature "human" would imply the presence of the
microfeatures animate and mammal. In DUCS, these constraints are
implicit in the connections to the selector units.

4.4. Storing Schemata with a
Complex Neural Architecture
Dolan and Dyer (1987) propose a scheme for implementing

schemata in a connectionist network. They adopt a structured,
functional approach to implementing connectionist models. They
model a system with a complex architecture, and replace functional
parts of the architecture with neural networks that perform the
function in question.

They note that connectionist models can be classified along the
dimension of the degree to which they are are decomposed into
functionally differentiated parts. On the one hand we have systems
of units, like those of Hopfield, which are relatively homogeneous
with respect to connection patterns and neuron behavior. Other
models, such as that of Hinton (1986), allow for differentiation of
the larger network into groups of units, which each have their own
purposes. Dolan and Dyer argue that these more structured systems
lose none of the emergent properties associated with the less
structured systems, but gain some capabilities. These capabilities are
gained, I might add, at the cost of designing a network to be specific
to a particular task.

Dolan and Dyer's system is called CRAM, and its goal is to
understand fables (short stories). It performs recognition and
instantiation of schemata and binding of roles in these schemata. The
schemata that they use are similar to the scripts used by Schank and
Abelson (1977) in their story-understanding efforts.

When a character in a story is recognized as playing some
role in a schema, then the rest of the schema must be instantiated in
order to fill other roles and comprehend the rest of the story.

Neural Networks in Artificial Intelligence 145

Their system is
d iv id ed in to fo u r
com ponen ts: schem a
memory, working memory,
procedural memory, and a
role binder (see Figure 4.2).
The procedural memory,
which resembles Touretzky
and H inton 's (1988)
production system (see
section 3.2), is divided into 2 components, the clause detectors and
the rule detectors.

The schema memory contains many winner-take-all
subnetworks. Each of the subnetworks is connected to the others.
Each node in the memory represents an entire schema. Inheritance is
implemented by strong positive weights on connections between
nodes representing superclasses and nodes representing subclasses.
All of the subclasses of a given superclass are in the same winner-
take-all network, since they are mutually exclusive. For instance, if
a mammal is a dog, it is not also a cat. Exceptions in inheritance are
implemented as strong negative connections between schema nodes.

Dolan and Dyer use a feature representation of symbols as bit
strings, similar to that used by McClelland and Kawamoto (1986b).
In this scheme, each concept is represented by a string of bits
indicating, for each of a series of features, whether or not that
feature is present in the concept. They initialize their schemata with
prototype tokens filling the roles. The idea behind this is to allow
for default information to fill roles until more specific information
comes in. When the actual role-filler replaces the prototype, some
of the prototype's subfeatures—those that do not conflict with the
new token—are retained.

They borrow the concept of the unit cube from Hinton and his
co-workers (1986a). The unit cube is useful for representing binary
relations. In this scheme, a cube is created of units having, in each of
its three dimensions, respectively, the number of bits found in the
representation for the relation and its two operands, each of which is
a symbol represented as described above. Each unit in the cube has a
value that is a three-way conjunction of the value found on the
respective bits for the three-bit vectors in the relation. This allows
for the storage of many relations in a single cube of units. This is
the design that they used to store relations in their working memory.

Figure 4.2 The architecture of CRAM (Dolan
and Dyer 1987). Reprinted by permission.

146 Knowledge Representation

When new assertions enter the working memory, they are also
put into a set of units that hold the input relation. These units are
input to a unit cube called the probe network. The purpose of the
probe network is to retrieve whatever was previously bound to the
particular role whose value is being input.

For instance, if we have, for a particular restaurant schema,
the role customer, filled by John, this may be expressed as the triple
(restaurant customer John), and the first two places (restaurant
customer) are input to the probe network. The probe network is
represented by conjunctive coding in a unit cube as described above.
The old binding, say man, for the customer role, may be readily
extracted as a bit vector, because, looking along the dimension of the
third symbol of the triple, the unit cube will contain the two
dimensional conjunctive coding of the first two two symbols in each
relation at each layer of the unit cube in which the third symbol's
value is one.

This old binding is used as a key to look up in the working
memory all the relations in which it is contained. These relations are
stored, one at a time as they are extracted, in a unit cube called the
3-d probe network. They are projected into a two-dimensional
image that represents conjunctively the first two symbols in each
relation; this is then projected into a 3-d network using the new
binding, to represent the new relation. This relation is then inserted
into the working memory in place of the one containing the old
binding.

Queries to the working memory work basically as follows; bit
k in the third symbol will be on if bits i and j are on and bit ijk in
the cube is on. This design for a working memory differs from that
of Touretzky and Hinton (1985) (see section 3.2), in which triples
representing relations are represented by randomly selected
receptive fields in a set of units.

There are exhitatory connections between nodes in the schema
memory and nodes in the working memory that represent relations
that form part of the schema represented by a given schema node.
This allows the insertion of assertions into the working memory to
trigger a particular schema, and vice versa.

Dolan and Dyer note that this type of treatment of symbolic
representation in schemata goes against two dearly-held assumptions
of the physical symbol system hypothesis (PSSH) (Newell 1980).
The first assumption is that it is possible to make arbitrarily finely
graded distinctions between symbols. This is not possible in their

Neural Networks in Artificial Intelligence 147

system, since everything that could distinguish between two symbols
must be encoded in the symbols' representations. Secondly, contrary
to the PSSH, variables can no longer be abstract entities used merely
to show relationships between slots in a schema, but must be
represented in the same way as their values. Thus the type/token
distinction disappears.

Another important difference between the connectionist
implementation of schemata and the conventional implementation is
the absence of pointers in the neural network. One solution to this,
Dolan and Dyer note, is to represent pointers by symbols, as
Touretzky does in BoltzCONS (see section 2.32). For instance, the
list (A (B C)) would be represented by (x A y) (y B C), where x and
y are symbols representing pointers. The other alternative that
Dolan and Dyer suggest is to use intermediate names for structures.
For instance, the recursive frame

(family-1 mother Sue
father Bob

mother’s-family (family-2 mother alice
father joe
son herb
daughter sue)

etc.

would be represented as

(family-1 mother sue)
(family-1 father Bob)
(family-1 mother's-family family-2)
(family-2 mother alice)
(family-2 father joe)
(family-2 son herb)
(family-2 daughter sue)
etc.

This allows the decomposition of arbitrarily complex frame
structures into triples so that they can be represented in a
connectionist working memory, like that used by Dolan and Dyer,
or Touretzky and Hinton.

148 Knowledge Representation

4.5. Learning Microfeatures for
Knowledge Representation
Mikkulainen and Dyer (1988) approach the problem of how to

represent concepts in a neural network. They contrast their work
with that of McClelland and Kawamoto (1986b), in which semantic
microfeatures, chosen in advance, were used to represent concepts
(see section 7.6). The problem with this approach is that it is difficult
to see a principled way of choosing which microfeatures one should
use. Often the microfeatures chosen are themselves complex
concepts that need to be decomposed, such as "human" or "animate".

Another way to encode concepts is the five layer back-
propagation network of Hinton (1986), in which there are is a layer
of output units, a layer of input units, a layer of units that represent
the output, a layer that represents the input, and a layer of hidden
units in the middle (see Figure 4.3). A single unit is on in each of the
input and output layers, that is, a local representation is used. This is
transformed to a distributed representation by using back-
propagation to force layers 2 and 4 in the system to encode the input
and output patterns respectively. There are many fewer units doing
the encoding than are in the input and output layers—in fact there
can be as few as log2n if the units are all binary-valued. This has the
advantage over McClelland and Kawamoto’s scheme in that this
allows compact representations without having to choose what the
semantic microfeatures are before the fact.

Mikkulainen and Dyer
extend this by allowing their
architecture (which they call
FGREP, for Forming Global
R e p resentations^ to
remember what these
representations are while they
are being learned. They do
this by adding a module to their network called the lexicon. The
lexicon stores particular input and output patterns. For instance, in a
language processing task, each word in the system is represented by a
pattern in the lexicon. However, the pattern that is used changes over
the course of the learning.

Their system has a network consisting of three layers: a layer
of input units, a layer of output units, and a layer of hidden units,
completely connected in a feed-forward fashion. Each of these units

lnpul .)m i n ■ 11 mi i mmi Mj i lnpul
representation

Output
representation

Output

Figure 4.3 The five-layer network of Hinton
(1986). Reprinted by permission from
Mikkulainen and Dyer (1988).

Neural Networks in Artificial Intelligence 149

has a real-valued activation ranging from 0 to 1; the weights range
between -1 and 1, and are also real-valued. Both the layer of input
units and the output units can hold several "words" (patterns) from
the lexicon, which is the other component of their system. The
system uses back-propagation. The error signals, however, are back-
propagated an additional step to change the input pattern. This
change in the input pattern changes the representations of the
patterns in the lexicon that formed the input pattern. The next time
the (now altered) input pattern is presented, it will be closer to the
old target output pattern. Of course, the output pattern itself will
have changed, since it is also composed of patterns from the lexicon.
Thus back-propagation is "shooting at a moving target", as the
authors put it.

They applied this system to the problem of assigning roles to
the sentence constituents that McClelland and Kawamoto used (see
section 7.6). They used a subset of the sentences used in McClelland
and Kawamoto's work, with the roles agent, act, patient, instrument,
and modifier-of-patient, and the syntactic categories subject, verb,
object, and object-of-with. There were 19 sentence generators of the
type "the human ate", "the animal broke the fragile-object", etc.

The nouns in the system were classified into groups for the
purpose of generating sentences; for instance, "plate" was classified
as a "fragile-object", and "dog" as an animal, so the sentence "the
dog broke the plate" was one of the sentences that was generated. In
this sentence, the dog was assigned to the agent role, and the plate the
patient role. In order to learn this role assignment, the patterns
corresponding to "dog", "broke", and "plate" were concatenated on
the input units in the slots reserved for subject, verb, and object (the
object-of-"with" category is empty, in this case). At the same time,
the patterns for "dog", "broke", and "plate" were put in the output
units in the slots for "agent", "act", and "patient" (the output slots for
"instrument" and "modifier" were empty.) Back-propagation was
applied, changing the patterns for "dog", "broke", and "plate". The
new patterns were then stored in the lexicon.

Each word was initially encoded with a random pattern of 12
units. Over time, nouns that fell into the same class tended to evolve
similar patterns. Of the 1553 sentences created by their sentence
generators, using a small set of nouns, the system was trained on
1515 sentences, and the remaining 38 were used to test the
performance of the network.

150 Knowledge Representation

They tested the network both on these 38 novel sentences and
on sentences that the network had seen before. Performance was
good, resulting in correct role assignment in most cases, with role
assignment being ambiguous in those cases in which words have
more than one role assignment. For instance, they cite the word
"bat", which can either be, as the kind of bat that is a flying animal,
the agent of an action or, as the kind of bat used in baseball, the
instrument of a "hitting" action. In this case, the role units are
activated to the extent that this object tends to play one or the other
role in the sentences given in learning. For instance, if "bat" is more
frequently an instrument than an agent, the pattern for bat would
tend to be dominated by the characteristics of the baseball bat. In this
case, the system would not perform well with the bat used as agent.

There is little difference in performance between the novel
and previously seen sentences. Because of the distributed nature of
the representations, the system also exhibits graceful performance
degradation with loss of units. Mikkulainen and Dyer refer to their
representations as "holographic" because they do a reasonable job of
classifying the words if some or even most of the units comprising
the representation are omitted. Even a single unit exhibits the
classification of the words nicely. They attempted to interpret each
unit semantically as a microfeature, but were unable to do so—the
units, most likely, were functioning as complex disjunctions and
conjunctions of many of the microfeatures that are useful in
partitioning the space of nouns.

They applied a merge clustering algorithm to the
representations (Kohonen 1982), in which, at each time step,
representations that were most similar to each other on a Euclidean
distance metric were merged. The results confirmed the expected
classifications; for instance, words representing food—e.g. "pasta"
and "cheese" were merged early. They also got a feeling for the
topological arrangement of the representations by reducing each
representation, viewed as a 12-dimensional vector, to a two-
dimensional vector using Kohonen's (1988) self-organizing feature
map (see section 2.18). This showed them that ambiguous words such
as bat and chicken (the latter viewed as food and as a live animal) are
intermediate in representation between their two meanings. The
exact distance between the word and its two meanings is distorted in
the two-dimensional "collapsing" of the vector, but the topological
relationships between representations are preserved.

Neural Networks in Artificial Intelligence 151

The main advantage of this system is its lexicon. However, the
lexicon is a non-connectionist system as it stands, although it could
probably be implemented in a connectionist system. In this work it
acts more like just a conventional memory.

Because of this lexicon, this system—and other systems built
using the FGREP architecture—can communicate with one another
and become parts of a larger modular system. For instance,
Mikkulainen and Dyer suggest that there could be another FGREP
system that relates sequences of actions to causal relations, and that
this system could take its "lexical" entries from the states of the
hidden units in the case role system, thus encoding the "shallow
semantics" (role semantics) compactly for the purposes of
understanding the semantics of causation. On a lower level, the
sentence-role system could communicate with syntactic/phonetic
systems, to create a modular language understanding system.
Building such systems is essential for performing comprehensive Al
tasks.

4.6. Implementing Evidential Reasoning
and Inheritance Hierarchies

Shastri (1988) has adopted ideas from semantic nets,
evidential reasoning, and inheritance hierarchies to develop "A
Connectionist Approach to Knowledge Representation". His goals
are to eliminate the need for an external homunculus for responding
to queries; instead he wants to have queries, which are expressed as
patterns of activation in the network, directly elicit other concepts.

He wants to constrain the possible set of inferences that the
network can form to those inferences that people seem to make
automatically. These inferences include inheritance of class
properties to instances of those classes, and recognition of class
membership.

He wants, also, in his model, to incorporate knowledge about
how things are correlated, to deal with things like exceptions. For
instance, Shastri gives the example of the facts that Dick (Nixon) is a
Quaker, Quakers tend to be pacifists, Dick is a Republican, and
Republicans tend to be non-pacifists. If the facts "Quakers tend to
be pacifists" and "Republicans tend to be non-pacifists" are
expressed as all-or-none entailments, that is, "Quakers are pacifists"
and "Republicans are non-pacifists", then there are conflicting ideas
about Dick. If, however, the relationships are expressed as

152 Knowledge Representation

statistical correlations, based on experience, then the probability of
Dick being a pacifist can be estimated by using rales to combine
statistical evidence. This does not preclude the existence of some
necessary truths, in which a proposition A implies another
proposition B in all cases.

He defines his conceptual structure formally. A concept is
similar to a frame, that is, it is a set of (attribute, value) pairs
(Minsky 1975). There are two kinds of attributes: properties and
structural links. Examples of properties are color, dimensions, and
weight. Structural links are such relations as "is-a" (class
membership), "is-a-part-of, and "occurs-during". The values of
attributes are themselves concepts. Thus, in terms of logic,
attributes correspond to 2-place predicates. N-place predicates can
always be decomposed into 2-place predicates, in order to express
arbitrarily complex relations.

He divides concepts into tokens and types—tokens correspond
to perceptual instances of types (classes). His model also stores, for
each attribute/value pair in a concept, the number of times that pair
has been observed, so, for instance, for the concept "apple", the
attribute/value pair color/red might have been observed 30 times
and the pair color/green might have been observed 20 times. (More
precisely, the ratios of the frequencies to the actual number of
observations are stored.)

This frequency information is used in the probabilistic
inference methods of the system. Is-a links are viewed as special in
his system; they are relations between concepts, and are all-or-none;
his system does not deal with fuzzy set membership (Zadeh 1973).

The frequency information can also be used to determine the
most likely value for a property: it is simply the value with the
highest frequency. Given a set of concepts, and the description of a
concept in terms of attribute/value pairs, the frequency information
can also be utilized to determine which of the concepts best fits the
set of pairs.

The frequency distribution of the independent properties does
not fully constrain the frequencies of combined properties. For
instance, to use one of Shastri's examples, if we know that 30% of
apples are sour, 70% are sweet, 60% are red, and 40% green, this
does not determine what percentage are red and sweet, for instance.
This may be formalized by having all the values of one property on
one dimension of a matrix, and the values of the other on the other
dimension, so that the cells in the matrix aij represent co-occurrence

Neural Networks in Artificial Intelligence 153

frequencies. Only the sums of the rows and columns are known, not
the aij themselves. The aij matrix is referred to by Shastri as a
macroconfiguration. Given no other information, it is most logical
to assume the most likely macroconfiguration meeting the
constraints on row and column sums. Shastri uses probability
theory and a mathematical technique called Lagrange multipliers to
show that aij = RiCj, where Ri and Cj are the row and column sums
of the row and column in question. Shastri points out that this
formula, which he calls the maximum entropy configuration, is
equivalent to Bayesian inference theory if it is assumed that the
probabilities of two attribute/value pairs are independent, because
this means, for instance, that

P((red,sweet)/apple)=P(red/apple)P(sweet/apple)

If additional information about co-occurrence frequencies is known,
then it can be incorporated as additional constraints to the maximum
entropy method, which can still arrive at a solution.

Inheritance is used to determine the frequency distribution of
values of a property for a subset if no better information is
available. For instance, if we know that 20% of cars are blue, and
we have no other information about the color distribution of
Toyotas, then it is reasonable to assume that 20% of Toyotas are
blue. Given an inheritance hierarchy, it is most reasonable to
inherit this distribution information about a particular
attribute/value pair for a concept A from that category which
contains A most immediately; for instance if A is a Toyota, and 30%
of Japanese cars are blue, but only 20% of cars in general are blue,
then it makes more sense to assume that 30% of Toyotas are blue,
since Toyotas are more similar to Japanese cars than they are to cars
in general (one presumes). This is what Shastri calls the principle of
relevance, that is, that the most relevant category is selected.

If a particular concept C is a member of a series of concepts
Bi,...,BN such that none of the Bi are subsets of any of the others,
and each of the Bi has a particular incidence of a property/value pair
P (for instance, 20% of the members of Bi are red in color, in B2,
30% are, etc.), the question is how to determine the property/value
incidence for that value in C, e.g., how many of C are red. The set
Bi of concepts relevant to C on concept P is referred to as r(C, P).
He shows that the best estimate for the incidence of a particular
attribute/value pair is estimated by combining values upwards in the

154 Knowledge Representation

conceptual hierarchy to determine the incidence of that
property/value pair in the category 12 that is the most specific and
includes all the Bi’s. This is recursively computed from the tree of
categories whose root is Q and whose leaves are the B{. Without
going into the specifics, the incidence values amount to a form of
weighted geometric average of all the frequency values for the given
property/value pair for all the Bi's and the categories that subsume
them, up to £2.

Given this formal theory of concepts and evidential reasoning,
Shastri goes on to implement it in a connectionist network. He uses
six kinds of nodes: (1-3) nodes representing concepts, properties and
values, (4) binder nodes that bind concept, property, and value
nodes together, (5) enable nodes (which allow the network to
distinguish between recognition and inheritance queries, the two
main types of queries that the system is designed to deal with), and
(6) relay-nodes, which implement links between subset and superset
nodes. (Shastri did this work at the University of Rochester, the
home of complex nodes.)

Each of the concept nodes has six connection sites. The first
site, which he calls the RELAY site, has connections to parents and
children of the concept in the is-a hierarchy; each is-a relationship is
represented by two links, one in each direction, between the parent
and child nodes. The strength of the parent to child link is given by
the ratio of the parent's frequency of occurrence divided by the
child's. The weight of the child to parent link is the reciprocal of
the parent to child link.

Binder nodes function in associating property/value pairs with
concepts and concept/property pairs with values. The first kind of
binder node has a special site where a property/value pair gives
input, as well as a special site called inherit. All three of these
inputs must be present in order for the binder node to give output to
the relevant concept. Another set of binder nodes work similarly in
associating concept/property pairs with values; they receive input
from a special node called recognize. Inheritance is implemented in
the following manner: if B is a superset of A that has property P,
and there is no superset of A that is more specific than B that also
has property P, then there is a connection between the binder node
for the B -P relationship and the binder node for the A -P
relationship, with a weight equal to the ratio of the incidence of the
properties in the two nodes. The concept nodes combine evidence,
from the various concepts from which they are inheriting it, in the

Neural Networks in Artificial Intelligence 155

geometric fashion that was mentioned above; the ratios serve to
make the incidences relative to one another so as to use them as
fractions in computing the total evidence. The potential of a given
node is the product of these fractions.

As well as having a potential, each node in his network has a
binary state, inactive or active, so that only some nodes are active at
any given time. Binding nodes are active only if they receive input
from all three inputs mentioned above; concept nodes are active if
they receive any input at all. The potential of a binding node
reflects the incidence of the (concept, property, value) triple it
represents; the potential of a concept node indicates to what degree
that concept is present in the particular situation given to the
network.

Shastri translated his "Quaker" example given above into a
network. There are concept nodes corresponding to pacifist, non
pacifist, belief, person, Quaker, Republican, and Dick. Dick is a
subset (an instance is equivalent to a subset in this model) of Quaker
and Republican to some degree; these categories are in turn subsets
of person. Pacifist and non-pacifist are both subsets of the concept
belief. Person, Quaker, Republican, and Dick are all connected to
the nodes pacifist and non-pacifist, via a binder node which is also
connected to the property node "has belief'.

Thus, for concept Dick (as well as the other three concepts
just mentioned), there is a property "has belief" which has the
possible values pacifist and non-pacifist. The network is initialized
by clamping (fixing as active) the nodes inherit, Dick, and "has
belief'. This is a query as to what Dick's belief is. Because of the
connections, after a short time the pacifist node settles to a potential
of

(number of pacifist Quakers)(number of pacifist Republicans)
(number of persons with beliefs)(number of pacifists)

due to the various connections I have described above. The pacifist
node receives input from the person node, which receives input
from the Republican and Quaker nodes, which receives input from
the Dick node. The connections are set up so that the pacifist node
receives activation corresponding to the probability that a person is
a Quaker Republican pacifist. A similar formula holds for the node
corresponding to non-pacifism.

156 Knowledge Representation

He also applied his network formalism to problems involving
inheritance from multiple categories. He built a system that
represented fruits and vegetables as are edible things with the
properties color and taste. Various things are known about the
distribution of properties with respect both to instances of fruits and
vegetables such as apples and carrots and the more general
categories themselves. Shastri’s system could answer questions about
the frequency distribution of properties for entities such as a red
sweet fruit or vegetable. The system utilizes local and inherited
information in arriving at the frequency distribution of entities it
settles on.

Since Shastri's nodes are so complex, it is hard to see how
they could be biologically implemented as single neurons; more
likely they would have to be small clusters of neurons. It is also
unclear how binding nodes, which effectively implement ternary
relations, could come to have this function among a set of nodes that
have come to represent concepts. There is a biologically plausible
learning rule for the strength of connections between concept nodes:
a Hebbian rule that strengthens the association between pairs of
nodes that co-occur. Since Shastri's weights are based on relative
frequency of occurrence, these are roughly compatible with such a
rule.

5
Speech Recognition and

Synthesis

5.1. Introduction
Speech recognition and synthesis are problems that naturally

lend themselves to a connectionist analysis. For one thing, speech
naturally is hierarchically structured, with different aspects of the
speech signal combining to form phonemes, which in turn combine
to form words. Speech is context- and speaker-dependent; phonemes
and words sound different in different contexts and when spoken by
different people. All of these characteristics of speech indicate that it
is well suited to processing in a highly parallel, interactive and
hierarchical fashion, all of which can be accomplished in a multi
layer connectionist network.

There are at least two ways that speech can be processed in a
connectionist network. One is to lay the speech signal out spatially
across a layer of input units, and allow different parts of the speech
signal to interact via connections to units higher up in the network.
This approach is taken by the TRACE system (McClelland & Elman,
1986a), which is discussed in this chapter. The other method is to
present only a time slice of the speech signal to the input units, and
present subsequent slices in their turn to the same set of input units.
In order to combine information from different time slices, it is
necessary to build some sort of memory into the network, such as
self-loops that allow internal units to retain older patterns of
activation, or additional input units that duplicate the old activation
pattern in the hidden units and recycle it through the network.

This second approach is taken by the work of Hopfield and
Tank (1987) and that of Watrous and Shastri (1987). Hopfield and
Tank view a speech signal as a sequence of states. State detectors,

158 Speech Recognition and Synthesis

which are their input units, output based on the probability that that
state is present at a given point in time. These signals are integrated
over time to accomplish word recognition. Watrous and Shastri took
an approach that is similar in spirit. Their input layer was
comprised of 16 units, which represented the amplitudes of 16
bandpass filters applied to the speech signal. Units above the input
layer had self-links that allow temporal integration of the speech
signal. Similar work was also done by Lang (1987).

Speech synthesis is an easier problem for computers than
speech recognition is. This is because many different sequences of
sounds can be interpreted as the same sequence of words, so speech
production is relatively unconstrained, unlike recognition, which
must give a single interpretation to its input. We consider two
approaches to speech production in a connectionist network, that of
Reggia and his co-workers (1988) and Sejnowski and Rosenberg's
NETtalk (1986). These two systems take sharply different
approaches to the production of speech from text. Reggia and his co-
workers' system is based on the analysis of the process of reading
aloud. Reggia and his co-workers model two complementary
pathways for this process, one that maps strings of letters, called
graphemes, to phonemes, and the other, which maps whole written
words to their entire stored speech patterns. They built a system that
employs both of these pathways in parallel.

Sejnowski and Rosenberg's NETtalk takes a more naive (or at
least agnostic) approach to speech production. They allow the back-
propagation algorithm to learn the relationship between text and
speech, using a feed-forward perceptron consisting of input (text),
hidden, and output (speech) layers. After the network had been
trained, they analyzed its behavior to determine what it was paying
attention to in the text in determining how it was pronounced, and
discovered some interesting rules implicit in the network's behavior.

5.2 . Comparing Algorithms for Speech Recognition
Lippmann and Gold (1987) compared the performance of

several different algorithms for speech recognition. They note that
the best current algorithms use hidden Markov models (HMMs)
(Rabiner & Juang 1986, Bahl, Jelinek & Mercer 1983) and they
consider a neural network implementation of a particular HMM.
HMMs are still considerably worse than people at speech
recognition.

Neural Networks in Artificial Intelligence 159

Lippmann and Gold note that the best speech recognizers can
typically be trained to recognize 100 words spoken in isolation with
99% accuracy, and 2000 words spoken with pauses in between them,
drawn from office memos (a constrained domain), with up to 95%
accuracy. More advances need to be made before a machine will be
able to successfully process connected speech from a variety of
speakers. They note that neural networks offer hope of improving
recognition performance, because they compute in parallel, and
because they can learn from experience.

Speech recognition, as currently conceived, is basically a
matching problem. Speech waveforms are broken down into chunks
or segments, and each of these is spectrally analyzed using a fast
Fourier transform, bandpass filters, or the like. These spectra are
then compared to examplar word spectra, and a distance metric is
computed. These spectra sequences have to be aligned temporally
with the exemplar, because of variations in speaking rate between
different people. The word is selected that receives the best
matching score.

NEURAL NET CLASSIFIERS FOR MIXED PATTERNS

CONTINUOUS-VALUED INPUT

SUPERVISED UNSUPERVISED SUPERVISED UNSUPERVISED.As I \
HOPFIELD HAMMING CARPENTER/ PERCEPTION MULTI-LAYER KOHONEN

NET NET GROSSBERG

1 CLASSIFIER

t
PERCEPTION SELF-ORGANIZING

FEATURE MAPS1 FEATUR

t
OPTIMUM LEADER GAUSSIAN k-NEAREST k-MEANS

CLASSIFIER CLUSTERING CLASSIFIER NEIGHBOR, CLUSTERING
ALGORITHM MIXTURE ALGORITHM

Figure 5.1. Taxonomy of neural networks used in speech recognition (Lippmann
and Gold 1987). Reprinted by permission.

Lippmann and Gold organize six neural network algorithms
that are useful for this word classification task in a taxonomy (see
Figure 5.1) They note that five of the six networks are close to

160 Speech Recognition and Synthesis

algorithms that were used in earlier approaches to speech
recognition, except that they are explicitly parallelized and adaptive.

They compare the performance of a two-, three-, and four-
layer perceptron with a standard k-nearest neighbor classifier on the
speech recognition task (Duda & Hart 1973). They used the back-
propagation algorithm to train the perceptrons.

They used the Texas Instruments Isolated Word Data Base
(Doddington & Shalk 1981). The five classifiers were trained on the
spoken versions of the first seven monosyllabic numbers (one, two,
three, four, five, six, and eight), each repeated ten times during
training, and for each of the 16 individuals whose speech was
digitized in the TI database. They used perceptron classifiers with a
variety of different numbers of hidden units.

The k-nearest neighbor classifier performed best (6.0%
classification error rate), then the best three layer perceptron
(7.7%), then the Gaussian classifier (8.7%), and finally the two
layer perceptron (14.4%). The addition of hidden units beyond 16
per layer did not prove necessary, since no significant improvements
in performance were achieved with this addition. Although the four
layer perceptrons performed only about as well as the three-layer
ones after their weights converged (using the back-propagation
algorithm), the convergence was much faster, less than 2000 trials in
all cases. The three layer nets having a large number of hidden units
took over 6000 trials to converge, and the two layer perceptron took
more than 29,000 trials to converge. If the classification process is
viewed as a process of placing stimuli into regions in an n-
dimensional feature space, the four layer perceptrons have a clear
advantage in convergence, since they can more readily construct the
required boundary surfaces in this space, apparently because the
four layer perceptrons tend to start out with surfaces near the
required ones.

5.3. Speech Recognition as Sequence Comparison
Hopfield and Tank (1987) designed an analog neural network

that is capable of recognizing sequences of states. This problem is
common to the analysis of visual motion, of speech, and of DNA
sequences. It is the problem of interpreting sequences of stimuli by
grouping them into adjacent sets which can be interpreted as a single
category. For instance, if the word "hello" is one of the categories
that one wants to recognize, then the problem is recognizing the

Neural Networks in Artificial Intelligence 161

individual phonemes in "hello" and then recognizing the series of
phonemes as the word. Two instances of a particular word can vary
in many ways; phonemes can be missing, they can be replaced by
other, similar phonemes, or extra phonemes can be inserted.

Hopfield and Tank ground their work in the theory of
sequence comparison (Sankoof & Kruskal 1983). If a , b, and g are
the stimulus states forming a category (in the case of speech,
phonemes or shorter speech chunks), and s] , s2 , and s j are the
categories (words in speech), composed of sequences of states, then
there exists a probability distribution p a(t) defining the probability
that state a is found a time t before the end of the sequence
comprising a particular category, say s] . These probability
distributions are of a Gaussian form, with their peaks being in the
middle of the time interval in which the particular state is most
likely to be found.

Hopfield and Tank's sequence recognition network is based on
the fact that once we detect a particular state in the sequence, we
know the probability distribution that describes when the sequence
of states is going to end. This is because we know (from our
detector) when the state ends, since we know when it began and how
long it is, and we know the probability distribution of how long
before the end of the sequence a state is supposed to occur, we can
look at it the other way around, and that gives us the probability
distribution of when the whole category is going to end.

If the sequence of states does in fact form an instance of a
particular category s] , then all the probability distributions should
add in phase, peaking at the time when s] is supposed to end. No
other category should receive as high a peak, because no other
category will have its probability distributions add in phase. Thus
the correct category should "win" a competition between all the
categories.

Hopfield and Tank implement such a competition in a layered,
feed-forward neural network in which input units that are state
detectors are connected to output units that detect sequences
(categories). The time-layered probability distribution is handled by
having each state detector unit output, to those sequence units
representing sequences in which that state is found, a signal that
varies temporally according to the aforementioned probability
distribution. The sequence recognition units are organized in a

162 Speech Recognition and Synthesis

winner-take-all network, so that only one of them can become fully
activated at once, the one receiving die most input.

Hopfield and Tank’s hardware implementation of this network
was limited to the problem of recognizing a few words as spoken by
a single speaker. They were forced to make Certain approximations
to an ideal network, such as the fact that they did not allow arbitrary
temporal probability distributions in their circuits, but used a fixed
set of time delay functions.

During the operation of Hopfield and Tank’s machine, many
of the input detector units are active but only a single output word
characterization unit is active. The inputs were the results of
measurements of signal strength at various frequencies along the
audible frequency spectrum, along with an input representing the
rate of change in the sound volume. The inputs are passed through a
linear programming circuit which passes them all through to the
output if they are all small, but if the inputs are large, it selects only
one of them. Thus it acts as a winner-take-all network only for a
strong input, allowing it to defeat other inputs. This makes sense,
because a strong input represents a high degree of certainty. In any
given time period, the linear programming circuit selects the input
that corresponds to the strongest formant in the speech. (A formant
is a single frequency-band component of a speech signal.) Hopfield
and Tank note that their system is not very robust with respect to
changes in pronunciation by the speaker which cause certain
formants to be de-emphasized and others to be emphasized.

They hand-wired the connections in their circuit by measuring
the outputs of the detectors as the words were input. If detector Pi
was active at time t during the utterance of a word, a positive (time-
delayed, according to the probability distribution) connection was
made between it and the output unit corresponding to the word. All
the other detectors were connected with inhibitory connections to
the word, so that other words would inhibit this word, since they
would excite the other detectors.

Hopfield and Tank achieved good performance on the eight
words that their circuit was wired to handle. Their circuit was able
to tolerate a 30% variation in the speed with which words were
spoken.

They suggested the use of a modified Hebbian learning rule in
order to improve network performance. The difference between
their rule and the classical Hebb rule is that instead of changing the

Neural Networks in Artificial Intelligence 163

weight Ti.0 of the connection between input and output based on
their cross-correlated activation strength V, with the formula

dTi-o=<Vi(t)Vo(t)>

the input response is replaced with the immediate time-delayed
response of the input unit, effect(i) (the probability distribution
function). Thus we have

& i-o=<effecti(t)V0(t)>

Hopfield and Tank suggest that the network can adapt to a particular
speaker's variation, or possibly the variation between speakers, in
the production of utterances, using this formula.

They note that their model is asynchronous; that is, it operates
without a system clock. The analog circuitry of the machine allows
irregularly spaced temporal events to contribute to the recognition
of a word.

A model such as this could be made of other recognition
processes that involve interpretation of a stream of data, notably
natural language understanding. Provision would have to be handle
recursive embedding in a sentence and long-distance relationships
between constituents of sentences.

5.4. The Temporal Flow Model
Watrous and Shastri (1987) trained a connectionist model to

learn phonetic features from sampled speech. Their first goal was to
train the model to discriminate between the word pair "no" and
"go", which are called a minimal pair since the two words differ on
only one phonetic feature. They used one male and one female
voice.

A three-layer connectionist network was used, which they call
their temporal flow model. There were 16 input units, used to input
the strength of the speech signal at various frequencies, produced by
multiple bandpass filters. They called it the temporal flow model
because the values presented at the input units change over time.
Thus earlier input values were "remembered" by units higher up in
the network because activation has flowed up from the input units.
They used units with a sigmoid output function. Units in the second
and third layers had links to themselves so that their values are

164 Speech Recognition and Synthesis

maintained by positive self-feedback. This allows earlier activation
flows to be "remembered" so that they can be integrated with later
ones.

Watrous and Shastri used a modified form of the back-
propagation algorithm to train their network, in order to handle the
self-links (which a strictly feed-forward network does not have.)

In their first experiment, they had only two output units,
which were all that were necessary for the "no"-"go" minimal pair
discrimination. They trained the network using an output function
that was linearly increasing in time; for instance, for "go", one unit
was supposed to increase from 0.5 to 1.0, and the other to decrease
from 0.5 to 0. This corresponded to the gradual integration of
evidence over time. In the case of "no", the units were trained to
have the opposite behavior.

When Watrous and Shastri trained their network, they did not
get a monotonically decreasing error function, because the back-
propagation algorithm was not devised to deal with continuously
changing input conditions. Although the back-propagation algorithm
did not proceed monotonically to a minimal error value, it did reach
such a value, and the weights in the minimal network were the ones
that they selected for further study. This network was able to clearly
distinguish between the "go" and "no" stimuli; in the case of each
one, one of the units had its activation driven down and the other
one had it driven up, over the temporal course of the stimulus. The
response was not the simple ramp that the network was trained on,
but it clearly distinguished between the two stimuli, without needing
to be told where in the temporal sequence of the stimulus to look for
a distinguishing feature. Effectively, it had learned to detect the
burst of sound that comes at the beginning of a "g" sound that
distinguishes it from an "n"; thus the n was the default.

The logical extension of this experiment would be to a
network that could distinguish between n stimuli using n-1 features.
Their next experiment was to discriminate between three consonants
(b, d and g) in one network with three output units, and six vowels
(i,e,a,u,U,i) in another network with six output units. One wonders
if they would have been able to achieve the same results with a
binary encoding of the output on the output units, instead of a
localist representation. Both networks used 16 hidden units.

They used as stimuli the 18 combinations of the consonants
(b,d,g) with the vowels (i,e,a,u,U,j). They selected the transitional

Neural Networks in Artificial Intelligence 165

portion of each syllable, and used it alone as input, to reduce
processing load.

In this experiment, they used a second-order optimization
algorithm called the Broyden-Fletcher-Goldfard-Shanno algorithm
(Fletcher 1980), which uses both the first and second derivatives of
the error surface to achieve more rapid convergence to a minimum.
Instead of a linear target function, such as that chosen in the
"no"/"go" experiment, they used a Gaussian function shaped like a
hump. This allowed unit response to decay back to a value of 0.5
(neutral response) after each speech event, so that the network could
readily be presented with a series of events.

Because of the second order optimization, they were able to
achieve uniform gradient descent, along the error surface, to a
minimum. They got network responses that were similar to the
target functions presented during training. For each vowel and
consonant, they were able to train each network so that one of the
output units (in either the vowel or the consonant network) would
respond to that sound.

Watrous and Shastri make three conclusions about their work:
(1) The networks were able to learn the discrimination task without
having to be shown both stimuli at once. (2) The consonant network
was able to discriminate between three different consonants in the
context of six different vowels, which is surprising given that these
sounds look different in those different contexts. This bodes well for
the ability to extend this approach to more complex stimuli. (3) The
temporal-flow model is workable (which was not at all obvious at
the outset).

5.5. The TRACE model
The TRACE model of speech understanding (McClelland &

Elman 1986a) contains three levels of units, corresponding to words,
phonemes, and features of speech. The model, in its feature units,
represents a time slice of speech. For each feature, and each
quantized time unit in the slice, there is an array of units
representing the possible values of that feature. Thus, each feature
has a two dimensional array of units associated with it. Three of the
features are vocalization, diffuseness, and acuteness, each of which,
at any point of the speech stream, can range from a low to a high
value; there are other features as well. For each phoneme, and for
every three time slices, there is also a unit, again forming a

166 Speech Recognition and Synthesis

rectangular array with time on one dimension and the phonemes on
the other. The phoneme detector units span six time slices, so they
overlap with each other. This is also the case with the word
detectors; the model is not very economical, especially because of the
necessity for duplication of the word detectors.

McClelland and Elman refer to their entire network of units as
the TRACE, because it is a trace of the analysis of the speech input.
All units are active at all time slices, not just the units that directly
respond to the current time slice; processing of previous time slices
continues in parallel with the initial processing of the current time
slice.

Excitatory connections exist between units within a level and
in different levels that are mutually compatible. For instance, if a
particular phoneme has a high value on a particular feature, say the
vocalization, units representing high values on that feature have bi
directional excitatory connections to the unit for that feature at each
time slice. Features, words or phonemes that are mutually
incompatible have bi-directional inhibitory connections between
them; for instance, at each time slice the units representing all the
phonemes that are centered at that time slice inhibit one another in a
winner-take-all network.

Context-sensitive effects are modeled by the use of
multiplicative "gating" connections. They give the example of the
fact that the phonemic features of a It/ are altered when it is then
followed by an /i/; the unit for an /i/ at a given time slice therefore
multiplicatively gates connections between feature detectors and the
unit for /t/ at the previous time slice.

McClelland and Elman developed two versions of their model,
TRACE I and TRACE II. TRACE I processed real speech,
consonant-vowel pairs spoken by a male. It contained detectors for
each of 15 input features; the input was divided into 5 millisecond
time slices.

TRACE II was not concerned with feature detection and how
features vary between phonemes and within a given phoneme
depending on its context. Rather, they used "mock speech" which
had the proper values for the features of each phoneme already set.
TRACE II wanted to account for the way words influence phoneme
perception top-down. TRACE II simplifies speech in that it only
uses 7 input features at each time slice instead of 15. Each phoneme
has a set (relative) value on each of these 7 features. Each phoneme
takes 11 time slices, and its characteristic feature pattern grows in

Neural Networks in Artificial Intelligence 167

strength and then fades. The peaks of adjacent phonemes are six
time slices apart. The phonemes that were supported are a subset of
the full set of phonemes found in English; the system could detect
211 words composed only of this subset.

The TRACE II model accounted well for psycholinguistic
findings on phoneme perception. They did an experiment in which
they presented a phoneme intermediate between "b" and "p",
followed by the phonemes /l/, /u/, and /g/ as in plug. After the "u"
phoneme is presented, the words "plug", "plus", "blush", and "blood"
become activated, which are the only words that the system knows
about that fit this pattern. When the "g" enters the system, "plug"
wins the competition between these four words, and top-down
reinforcement flows to the "b" phoneme, which wins the competition
with the "p". Until then, the phoneme remains ambiguous. This
winner-take-all behavior on the phoneme and word level models the
categorical perception characteristic of people.

The TRACE model exhibits several other properties of human
word perception. For instance, the model can perceive a word better
if it is preceded by a valid word, so that it knows better where the
boundary is between the two words. It cannot tell that a word has
ended until somewhat into the next word, in the case when one word
is the beginning of another (for example, bell and bellows). It is
able to recover from a badly specified beginning of a word, even
though the model is heavily dependent on word beginnings to start to
activate words.

The major deficiency of the TRACE model, which McClelland
and Elman admit, is the local nature of the model and the enormous
number of units and connections that this entails. If connections and
weights are learned such as the multiplicative, gating connections
between a phoneme's features and the following phoneme mentioned
earlier, it is difficult to find a mechanism to generalize this learning
across the entire network. This problem is common to a lot of
connectionist networks that use local representations; most handle it
by doing the learning in some sort of central network, which then
distributes it, in the manner of McClelland's (1985) Connection
Information Distributor (CID). McClelland and Elman conclude that
some combination of a central representation and local, temporally
specific representation are required.

168 Speech Recognition and Synthesis

5.6. A Model of the Print-to-speech
Transformation Process
Reggia, Marsland, and Berndt (1988) developed a

connectionist model of the transformation of text to speech. There
are two competing theories of how people do this. In one, each
grapheme—one or more letters in written text that correspond to a
phoneme—is mapped onto a phoneme, and the phonemes are then
concatenated together in the speech stream. In the other, the entire
word is read, and then its entire sound pattern, stored as part of
lexical memory, is uttered. Evidence for the former method is that
people have no trouble pronouncing non-words that look like words,
e.g., "kint"; evidence for the latter is that people have no trouble
pronouncing words with irregular spellings. These two methods
need not be exclusive of one another; in fact, many people believe
that both operate in parallel in the process of reading aloud.

Reggia and his co-workers embodied such a two-process
model of reading in a network. The network has three types of
nodes; grapheme nodes, word nodes, and phoneme nodes.
Activation flows both directly from grapheme to phoneme nodes
(which they call the grapheme-phoneme correspondence (GRC)
route) and through word nodes (which they call the lexical route),
that is, from grapheme to word to phoneme nodes. For each letter
and phoneme position in the input or output stream, they had to
represent all the possible values that each of these could take on.
They used a study by Hanna and co-workers (1966) to arrive at a set
of 168 graphemes and 48 phonemes for English. They also used this
study to determine the possible grapheme-to-phoneme mappings.
Each grapheme was connected to all the phoneme nodes in the same
position that represented possible pronunciations for it. The weights
on these connections were set to observed probabilities of each
grapheme-phoneme pair, given the grapheme. Thus the weights on
connections coming out of each grapheme node summed to one.

Grapheme group k in the input represented all those
graphemes that participate in letter position it of a word. Each
grapheme in group k was connected to all the words in which that
grapheme was found in position k. If a given grapheme was
connected in such a manner to n words, the strength of each
connection was set to lln.

Thus the network is feed-forward, with all positive
connections, and two distinct pathways for activation. This is what

Neural Networks in Artificial Intelligence 169

Reggia and his co-workers refer to as indirect competition, unlike
other competitive schemes, such as in competitive learning (see
sections 2.15-2.17), in which there is lateral inhibition between
alternative nodes/pathways. This is more akin to integration of
information from parallel sources. Their network is designed
explicitly for this kind of competition.

They used the following activation update rule:

ai'= ki(ini - 2ai(l-ini))(l-ai)

where ai is the prior activation of the ith node, a i is the activation
after the update, and ini is the total input received at the node. This
rule causes a winner-take-all behavior, as simulation demonstrates.
When all the ai are initialized to zero, the ai always stay between 0
and 1, because of the behavior of the above rule, and converge over
time to one or the other extreme.

In the case of grapheme and phoneme nodes, the constant ki
was set to 1; in the case of word nodes it was set to a logarithmic
function of the prior probability of the word being present at all
(based on the word’s frequency in English), thus it takes more
evidence and more time for a less frequent word to be recognized
and activated. The model was initialized with the grapheme nodes
that were present in the input receiving an input of one and all
others receiving zero input. The output of a given node along a
given path is based on what proportion of activation should be sent
to that node based on the competitive strength of that node. The
competitive strength cik of a path from node i to node k is defined
as

„ _ wm(t) ik — .

m

where m ranges over all the nodes to which node k is connected.
Thus node k receives input based on not only the activation flow of
the path from i to k, but also the relative strength of the path from i
to k compared to all the other paths, from m to k. The output from
i to k is: outik(t) = cik(t)ak(t). The input at each node is set based
on all the outputs that it receives: ini(t) = 1-TIk (l-outik(t)). Reggia
and his co-workers devised this numerical version of the "or"

170 Speech Recognition and Synthesis

function, because it increases with an increase in any one of the
outik.

They contrast this approach with that of ordinary feed
forward neural networks, in which the input to a node is almost
always a weighted sum of the activations of the nodes inputting to it,
which remains stable in time. Here nodes compete to receive input,
those with activation tend to get more, and those with less tend to get
less. Thus the system evolves—relaxes—to a stable state.

Each word receives input from each of n graphemes in it.
The input from the grapheme number p at node i is given by
inip(t) = l-TIk(l- outik), where k ranges over the input nodes. This
simulates the "or" function, since, ideally, only one of these input
graphemes should be contributing, at each letter position. In order
to combine the input from graphemes at different positions in a
word, a product of all the inip for all values of p is used, because
this simulates the "and" function—all graphemes must be present for
a word to be present.

There is also the question of how the inputs to the phoneme
(output) units should be combined. Each phoneme unit at each
position receives input from grapheme units at the same position, as
well as word units. Initially they combined these as simply the
product ("and" function), but this did not account for the partial
"or" nature of the print-to-sound transformation process mentioned
earlier, like the ability to pronounce non-words such as "hink".
Therefore, they changed the . function that combines information
from the two sources to:

ini=iniAND(l-ai) + iniORai

where ini AND=iniWiniG and iniOR=\l-TlR(l-iniR). Here a/ is the
activation of the ith phoneme unit, iniw is the input from the word
units (calculated using the "or" function given above), iniG is the
corresponding value from the grapheme units, iniOR is the "or"
component, where R is either W or G—that is, iniOR is the "or"
of the two values. The total formula emphasizes the "and"
component when a/ is relatively de-activated and the "or" component
otherwise. This modification allows the correct phonemes to
saturate when the information coming from either the lexical route
or the grapheme route is weak.

Reggia and his co-workers point out that the normal way that
parallel sources of information "advise" one another is via top-down

Neural Networks in Artificial Intelligence 171

connections. In their model, it is done somewhat differently.
Information is passed backward, but only in terms of the relative
activation of different output and hidden units, which determines the
forward flow of input. For instance, in a standard top-down
implementation, word nodes might influence phoneme nodes, which
then—top-down—would influence grapheme nodes. And vice
versa. In their model, the fact that a phoneme node is receiving
more activation from a word node will cause it to get more input
and thus activation from a grapheme node as well. But because
there are no explicit top-down connections, Reggia and his co-
workers refer to their model as "indirectly interactive".

They develop a metric of word regularity that is based on the
frequency of grapheme-phoneme mappings in a word. They define
the regularity of a word as

jr (1.05-p0pi

R = -n --------

X , (1.05-Pi)
i=i

where p i is the proportion of times that the grapheme in the ith
position of the word represents the given phoneme (and n is the
number of graphemes in the word). Thus R ranges between 0 and
about 1; values close to 1 are highly regular and values close to zero
are highly irregular. Reggia and his co-workers used a value of
1.05 rather than 1 in the formula so that the cases in which p equals
1 would be counted.

They gave the example of presenting the network with the
word "onion", in which each letter was a grapheme (in many words,
more than one letter may form a grapheme). Initially, the word
node corresponding to "union" was more strongly activated than that
for "onion"; this was because "union" occurs more frequently in
English than "onion". After relaxation, only the phonemes
corresponding to the correct pronunciation of "onion" all became
saturated. They ran their model with 64 words of varying
frequency and regularity; in all these cases exactly the right set of
phonemes became saturated after relaxation. As might be expected,
this occurred most quickly with high-frequency regular words, and
least quickly with low-frequency irregular words, with high-
frequency irregular words, and then low-frequency regular words,

172 Speech Recognition and Synthesis

coming in between. Frequency and regularity, as well as the two of
them combined, all produced statistically highly significant
differences in the time required to reach saturation, based on
analysis of variance.

Reggia and his co-workers experimented with presenting non
words to the model. Often not all the phonemes in the output were
saturated. Moreover, these non-words were subject to interferences
in their pronunciation from orthographically similar words which
would not have occurred if the model had only performed the
grapheme-to-phoneme mapping.

A theory of some forms of dyslexia is that one of the two
routes from printed text to speech is disrupted. Reggia and his co
workers tested the implications of this by turning off the grapheme-
to-phoneme portion of their model, leaving only the lexical
component. They presented the same 64 words as before, and again
all the correct phonemes were activated. As one might expect in this
case, only word frequency played a role in the speed at which the
system converged to a solution, not word regularity. Also, as might
be expected, this network had much more trouble with non-words.

When they turned off the word portion of the model, many
irregular words were pronounced in a regular manner. This "over-
regularization" is typical of surface dyslexia.

Reggia and his co-workers feel that their work is significant
in two ways: (1) It provides a mechanism for competitive activation
along multiple pathways that does not explicitly involve inhibitory
links and (2) It provides a detailed, localist model of the print-to-
sound transformation that accounts for dyslexia, unlike NETtalk (see
the next section), which is a distributed model and uses back-
propagation learning.

5.7. NETtalk: Reading Aloud with
a Three-Layer Perceptron
One of the earliest and best-known applications of the error

back-propagation algorithm (see section 2.12) was to the problem of
pronouncing printed text. Sejnowski and Rosenberg (1987)
developed their NETtalk system for this problem.

The NETtalk system consists of three layers of units in a feed
forward network. The bottom layer consists of units that represent
seven letters. Each letter is represented by a group of 29 units in
which exactly one unit is activated. 26 of the units in this group

Neural Networks in Artificial Intelligence 173

constitute a local (unary) representation for the alphabet, and 3
designate punctuation and word boundaries. There are 203 (7*29)
input units.

The goal of the network is to output the correct representation
for the phoneme corresponding to the central letter of the seven
being presented. The other six surrounding letters provide clues to
its pronunciation. Sejnowski and Rosenberg observe that most of the
information as to the pronunciation of a letter can be found in its
immediate context. They would have used a larger window than 7
letters if computational resources had been sufficient, but they found
that 7 was sufficient to capture most context information.

While they use a local representation for their input, they use a
distributed representation for their output. Each phoneme is
represented by a set of 26 articulatory feature units, as well as three
units to denote stress and syllable boundaries. Thus there are 29
output units.

There are also 80 hidden units. Each of the 203 input units is
connected to each of the 80 hidden units. Each of these, in its turn, is
connected to the 29 output units. They used back-propagation and a
sigmoid activation function for their units.

As learning proceeded, the seven letters represented in the
input units functioned as a sliding "window" into the text that was
used for training. Sejnowski and Rosenberg used two corpuses of
text for the training. The first was a phonetically transcribed speech
of a child in first grade; the second was drawn from Webster's
Pocket Dictionary. Each of these corpuses contained paired text-
phoneme information for use during learning.

The first corpus contained 1024 words. Performance
improved rapidly at the beginning of training, and then leveled off.
Early on, the system distinguished between vowels and consonants,
and then made more subtle distinctions. The system performed better
at placing stress than at finding the exact phoneme. Errors often
resulted from the confusion of similar phonemes. The system had a
learning curve that followed the power law characteristic of human
subjects (Rosenbloom & Newell 1986). After 50 passes through the
corpus, the system achieved 95% correct performance.

To gauge generalization performance, the trained network was
tested on an additional 439 words from the same speaker. It achieved
78% correct performance. They found that the more words the
system was trained on, the better generalization performance it
achieved.

174 Speech Recognition and Synthesis

They introduced noise into the weights; they produced
degradation in performance commensurate with the amount of noise
introduced. The degradation was gradual. The network recovers
quickly upon retraining if the noise introduced is not too great.

They used the second corpus, from Webster's Pocket
Dictionary, to test the effect on performance of the number of
hidden units. 1000 of the most frequently occurring (and thus also
the most irregular in pronunciation) words in English were selected
from this dictionary and used for training. With no hidden units, just
direct connections between the input and output units, performance
reached a plateau at 82% correct. With 120 hidden units, 98%
performance was achieved; varying the number of hidden units
between 0 and 120 led to performance between 82% and 98%. They
also tried systems with more than one hidden layer of units. For
instance, a four-layer system with two hidden layers of 80 units each,
which had about as many weights as the system with one hidden layer
of 120 hidden units, had asymptotic performance on the training set
which was about equal to the 120-unit system.

They compare NETtalk with non-connectionist approaches to
speech synthesis, which typically use a look-up table, which is a
dictionary that contains the pronunciation of each word. NETtalk,
functioning with 80 hidden units, requires 18,629 weights. If each
weight is allocated 4 bits, this is a total of about 80,000 bits. The
dictionary of 20,012 words requires about two million bits of
storage. The reason NETtalk can achieve such a reduction is because
of the substantial redundancy in the pronunciation of English.

They do not claim that NETtalk represents a good model of
speech production in people. People learn to speak and then to read;
NETtalk learns both at once. Also, the 7-letter "window" for
establishing context does not accurately model the wider range of
information available to the human reader (including information
drawn from linguistic sources other than phonetics.)

Rosenberg (1987) took a close look at NETTalk's internal
representations in order to determine exactly what features of the
input it was detecting in effecting the transformation from text to
speech. One of the first things that Rosenberg wanted to find out
was whether NETTalk divided its internal knowledge into two
sources: a source of lexical pronunciation knowledge and source of
grapheme pronunciation knowledge, like that done by the system of
Reggia and his co-workers (see the last section)

Neural Networks in Artificial Intelligence 175

He used factor analysis, which attempts to account for
variables in terms of a linear combination of underlying variables,
and cluster analysis, which iteratively groups items into continually
more general clusters, in his investigation of the model.

NETtalk, in its 80 hidden unit version, has about 20% of its
hidden units highly activated, and the rest relatively inactivated, at
any given time.

Rosenberg wanted to classify the patterns of hidden unit
activation that resulted in each output phoneme. To do this, he
averaged the activation of these units over many occurrences—those
found in 1000 words—for each phoneme. He then had a good
representation of the average hidden unit pattern of that phoneme.
This hidden unit vector was computed for each of 48 phonemes.
Correlation coefficients were computed for each pair of phonemes,
to create a 48x48 matrix.

These coefficients were then used in a hierarchical clustering
analysis in which the most similar pairs of phonemes, judged by the
correlations, were grouped together first, then progressively less
similar ones. These led to different results with respect to the
vowels and consonants. Vowels were classified mainly on the basis
of their place of articulation. For instance, vowels were divided first
on the basis of whether the tongue is toward the front or the back of
the mouth when they are pronounced. Within these divisions, they
were further divided into those for which the tongue is high in the
mouth, and those for which it is low.

The consonant phoneme groupings were more related to the
way they are written than their place of articulation. For instance,
one cluster is around the possible pronunciations of the letter t: fT/,
ID/, /C/, and /S/. Other groupings are around the possible
pronunciations of x, of m, of s, of n, of p, and of g.

Rosenberg was able to account for 68% of the total variance in
ten vowels using three factors from factor analysis. Two of these
factors roughly correspond to the place of articulation in the mouth,
in that UJ and /i/ have high values on one of the factors and they are
articulated near the back. The third factor accounts for the height of
the vowel; the low vowels Id, !&!, and /<§>/ have high values on this
factor. Thus his results from factor analysis basically duplicated the
results from hierarchical clustering.

These analyses revealed an important fact about NETtalk; that
it uses its hidden units in distinctively different manner for vowels
and consonants; patterns for vowels are similar if they have similar

176 Speech Recognition and Synthesis

heights or places of articulation, whereas patterns for consonants are
similar if they correspond to alternative pronunciations of input
letters.

6
Visual Perception and

Pattern Recognition

6.1. Introduction
Approaches to visual perception in the connectionist paradigm

have been very eclectic. There are two basic ways one can recognize
objects, depending on how the object is represented. One way
objects can be represented is as line drawings. Recognition of line
drawings of various types has long been an active area of research in
AI; for some examples, see Huffman (1971), Clowes (1971), and
Waltz (1975). Sabbah (1985) extended this work into the
connectionist research paradigm, using large numbers of local units
to represent objects at various levels of complexity, such as lines,
angles, and faces.

The other main way object recognition can be accomplished is
by using input that is much like a photograph, that is, that is
represented as an array of gray-level values. (Of course, there is a
whole range of possible inputs between a line drawing and a
photograph.) Machine vision using photographic input is most
realistic, as such an input is similar to what people have to deal
within their visual field. As in the case of line drawings, the most
successful approaches to scene understanding has been hierarchical;
simple features detected at the lowest level are then combined into
more complex features. This is the approach taken by Honavar and
Uhr (1987) with their recognition cones. These structures are
roughly cone-shaped networks of several layers; they have fewer
units and detect more complex features as one goes up in the network
from the input. Since the number of units tapers off as you get
further from the input, these networks are cone-shaped. Each unit in

178 Visual Perception and Pattern Recognition

the network has a receptive field consisting of connections to units
below it; the weights are learned through back-propagation.
Honavar and Uhr also introduce a technique they call generation,
whereby units can change their receptive fields adaptively to
improve performance. Generation is a form of learning. By
combining hierarchy, generation, and learning of weights, Honavar
and Uhr are able to recognize a variety of simple two dimensional
objects.

Beyond general object recognition, another area to which
connectionist systems have been applied is the modeling of human
visual perceptual phenomena. Two of the most important such
phenomena are: (1) The separation of a visual field into figure and
ground, when one has a simple visual field consisting of a dark
continuous "field" against a light "ground". (2) The perception of an
object in a position-independent manner, coupled with its position.
The primate perceptual system appears to separate the tasks of
determining what an object is and where it is in the visual field.
Kienker and his co-workers (1986) attacked the problem of devising
a connectionist system to separate figure and ground. Rueckl and his
co-workers (1988) devised a neural network to explain why primates
process where an object is, and what it is, separately.

Finally, as a transition to chapter 7, which is on language
understanding, we discuss the work of Lakoff (1988) and that of
Regier (1988) on linking visual and verbal semantics. In the
development of a child, he or she leams to recognize the objects in
the visual world at the same time as he or she is learning their
names.

Central to Lakoff s conception of the linkage between the
world of objects and language is the concept of cognitive topology;
topological relationships between objects in the world is central to
understanding the meaning of simple prepositions such as in, around,
and towards. Also, the concept of motion is central to the semantics
of many verbs. For example the phrase "Nadia got over Tomas"
refers to Tomas as a metaphorical "obstacle" on Nadia's life "path".
Regier shows how these simple concepts can be detected by a neural
network.

6.2. Interpreting Origami Figures
Sabbah (1985) applied a connectionist model to a famous

problem domain in computer vision, "origami world", originally

Neural Networks in Artificial Intelligence 179

studied by Kanade (Kanade 1980). Origami world is a
generalization of the famous blocks-world made famous by Huffman
(1971), Clowes (1971), and Waltz (1975). An object in Origami
world is composed of surfaces expressed as line drawings such as in
Figure 6.1; blocks-world consists only of solid objects, as in Figure
6.2. Thus the line that the arrow points to in, Figure 6.1, would not
be allowed in blocks world, since it cannot be interpreted in terms
of solid objects alone. Objects in origami world, although they must
be formed out of flat surfaces, include complex objects such as the
Origami duck (Figure 6.3).

Sabbah uses a set of
param eter spaces to
represent the different levels
of object recognition in his
model. A parameter space is
simply a set of local units
that each corresponds to a
particular value of a vector
of parameters. At the lowest
level, edge segments are
represented. Edge extraction
is not included in Sabbah's
model, but has been the
object of considerable study
(Rosenfeld & Kak 1976). Figure 6.1. An object in Origami world.
There are relaxation methods
for detecting edges, which can readily be adapted to neural network
implementations.

At a higher level, lines are represented as collections of edges
that line up with one another. In order to be noise-tolerant, Sabbah
allows lines to be composed of edges that have gaps between them.
Rays are half-lines. Rays are critical in defining the various joints in
an origami figure.

Sabbah has two kinds of joints in his scheme, 1-joints and t-
joints. L-joints (so called because two rays come together at such a
joint to make an "L") represent comers of a face. T-joints represent
points of possible occlusion, that is, where there is one face blocking
another. In Figure 6.4, an 1-joint and a t-joint are shown. Sabbah
also has a parameter space for c-joints, which are present when two
or more partially visible faces meet. He also has a parameter space
for skewed faces.

180 Visual Perception and Pattern Recognition

In each parameter
space, each particular entity
is represented by a set of
parameters which uniquely
characterize it. Thus, for
example, an 1-joint is defined
by its location (two
parameters), the angle of one
of its rays relative to a
coordinate axis in the image
plane, and the angle between
the rays of the 1-joint. Thus
this parameter space is four
dimensional. The parameter
space for skewed faces
(which are parallelograms) is
six-dimensional, since a skewed face can be represented by one 1-
joint and the length of each of the 1-joint's rays.

Figure 6.2 An object in blocks world.

Figure 6.3. The Origami Duck. Its
quacks are flat, too.

Sabbah's representations are
local, not distributed. Since each
parameter space has an infinite
number of points, there are
potentially an infinite number of
nodes. Thus in any real
implementation, the parameter
must be partitioned into n-
dimensional regions formed by a
grid in n dimensions, and any
feature in the input must activate a
node corresponding to the interval in which it falls. Because of the
high dimensionality of several of Sabbah's parameter spaces, large
numbers of units are required.

Sabbah's parameter spaces are organized into a hierarchy.
Nodes in a lower-level parameter space are connected with positive
weights to higher-level nodes with which they are compatible. For
instance, a particular 1-joint node is connected positively to all the
nodes for all the skewed faces that are compatible with it, that is,
that could possibly have it as a comer.

His model incorporates both bottom-up and top-down
connections. An 1-joint reinforces all the skewed faces that are

Neural Networks in Artificial Intelligence 181

compatible with it, and a skewed face reinforces the specific four 1-
joints that compose it. This top-down reinforcement is necessary
because there are cases in which component features are obscured by
occlusion or noise, yet the system still needs to infer their presence.

Sabbah's scheme was ___■—
inspired by the Hough ^
transform (Rosenfeld & Kak Ix. n .
1976), which is used for x.
edge detection. In this
transform, each point in the
image space "votes" for all
the edges with which it is
compatible. Those edges
receiving many votes are
inferred to be in the image.
A particular point is
considered to be consistent
with all of the edges that
could pass through it. Figure 6.4. Vertices A and B marked on the

The Hough transform Origami world box.
is similar to Sabbah's
hierarchy of units, in that units in Sabbah's scheme also "vote" for
the higher level units with which they are compatible. Sabbah's is
one of many connectionist systems which have borrowed ideas from
earlier, non-connectionist, work in computer science and artificial
intelligence.

Each of Sabbah's units has an activation level (a l) which
ranges from 0 to 10 (the maximum is arbitrary). The initial rule
that Sabbah used for each unit was

a n̂+l =a n̂+(^n+l)'(^n+l)

This formula was applied iteratively, in the manner of a relaxation;
aln was the activation level of a given unit in the system on the nth
iteration. Initially nothing was activated except the lowest level
nodes, which corresponded to perceived features.

All the connections between nodes are either excitatory or
inhibitory. En+ j is the mean activation input of all the units that are
connected to the unit in question by excitatory connections. In+1 is

182 Visual Perception and Pattern Recognition

the largest activation of any unit that is connected in an inhibitory
fashion.

Sabbah’s units had a tendency to saturate quickly, since any
small amount of activation that they received accumulated over a
series of iterations. To handle this, Sabbah added a noise threshold
term, NT, to his equation:

a^n+l =aln+(En+l)~(In+l)~NT

This problem, Sabbah notes, could also have been handled by
inhibitory connections between all the incompatible units on a
particular level in his hierarchy (winner-take-all), but this was
impractical to implement. Instead, he allows only units representing
similar features to inhibit one another.

Sabbah's other problem stemmed from poor input. Under
conditions of poor input, some units reach maximum activation
while others lag behind. Sabbah fixed this by forcing the activation
level to remain at maximum for a certain amount of time. In
addition to this, he added normalization factors to En+ j and In+1
to increase the amount of time over which evidence can accumulate.
Now his formula became:

aln+ l =aln+(En+pktimeHIn+ l ^ n h time)-NT

kuna and kinhn^ were both large.
Finally, he modified his last term (NT) to provide fast decay

of a node's activation after saturation in the absence of top-down
feedback and the presence of inhibition from other nodes, slow
decay with no feedback and no inhibition, and no decay in the
presence of feedback.

Sabbah tested his network with four examples. The first was
with a complex object, the origami chair. Since the input is perfect,
and only correct features are evoked at the lowest level, the network
reaches the correct interpretation quickly; effectively it is
functioning as a look-up table.

The next stimulus Sabbah presented to his system was a square
with a comer obscured by a black noisy blotch (see Figure 6.6). In
addition to detecting the three unobscured comers, the system
detected several comers within the blotch. In the absence of top-
down feedback from the higher-level node representing the face as a

Neural Networks in Artificial Intelligence 183

whole, these comers within the blotch decay. Initially, the system
made a wrong decision as to what comer is present in the blotch, but
this decision was inhibited by the correct choice, which was
activated by top-down feedback.

Sabbah's third and fourth examples have to do with occlusion.
In the third example, a solid is occluded by a rectangle; in the
fourth, a box is occluded by itself (see Figures 6.5 and 6.7). The
network reacts by activating all the possible faces that could be the
occluded face in a "winner-take-all" network; the face that "wins"
will get activation from t-joints (occlusion points) and 1-joints, and
consideration will be given to the extent of the occlusion (candidate
faces extending beyond the occlusion must be ruled out).

(left) Figure 6.5, box occluded by face, (center) Figure 6.6, face with noisy
comer, (right) Figure 6.7, self-occluding box.

6.3. Recognition Cones
Honavar and Uhr (1988) propose a system for object

recognition and classification that is unusual because the neural
network topology varies as the learning proceeds; units and links are
generated. They use a system with multiple layers wherein each
neuron has a relatively small and local receptive field. They start
with their concept of recognition cones (Uhr 1987, Honavar & Uhr

Recognition cones are inspired by both the human visual
system and other hierarchical architectures in computer vision, such
as pyramids (Uhr 1983, Burt 1984). They are composed of several
layers of units; the number of units in a particular layer is a
logarithmic function of the layer number. The resolution of the
layers decreases logarithmically as one moves from the input layer
upwards.

Typically each unit in a particular layer is connected to some
local neighborhood of units in the layer below, and typically in a
regular fashion; for instance, a 2x2 layer of units might be

1987).

184 Visual Perception and Pattern Recognition

connected to a 4x4 layer below it by connecting each of the four
units in the upper left comer of the 4x4 array to the upper left unit
in the 2x2 array. Or, the arrays might have overlapping receptive
fields, which would create a form of coarse coding.

Honavar and Uhr’s simulations involve both upward and
downward connectivity. Because of the local receptive fields, units
in a recognition cone system can compute a large variety of possible
local image transforms (functions), such as traditional edge-
detectors, and create a complex multi-resolution representation of an
image. As you go up in the cone, more complex features are
represented. They have been applied, using pre-designed
architectures, to recognize noisy handwritten letters, place settings
consisting of hand-drawn knives, plates, spoons, and forks and
complex features (windows) in photographs of houses.

Each unit is viewed by Honavar and Uhr as a transform of its
inputting units. Transforms are re-weighted using a variation of
Rumelhart and co-workers' back-propagation algorithm. Honavar
and Uhr suggest a heuristic to guide this process, which they call the
minimal complexity heuristic. This is as follows: in order to
perform a given pattern classification task, choose the simplest
structure that is necessary to perform the classification, by
minimizing the number of nodes, links, and/or layers.

In their simulation, they used a 32x32 bottom input layer;
each layer above it reduced each dimension by two, to give five
layers. Each unit computes a set of transforms. When a transform is
selected for use in a particular layer, it is provided to all the units in
that layer. The bottom input layer’s units are each presented with
the outputs of eight edge detectors, spaced 45° apart.

Honavar and Uhr evaluate the performance of their network
by keeping track of the percentage of correct responses for each
pattern class, for the recent performance of the network.
Transforms are randomly selected from a set of non-linear functions
with the constraint that each transform should only draw on the
receptive field of the unit it is associated with.

As the error is propagated back, from top to bottom, through
the layers, we see which transforms are performing well at each
layer. If the transforms at a particular level are performing badly,
some of them may be pruned, and new random ones generation.
Thus a sort of "natural selection" process occurs with the transforms
(not unlike the NGS theory of Reeke and Edelman; see section 2.19).

Neural Networks in Artificial Intelligence 185

Generation of transforms is an independent learning method which
can be used either by itself or in combination with a variety of
learning rules-- supervised or unsupervised. (Honavar 1989)

Honavar and Uhr ran their simulation to recognize two classes
of stimuli—letters (T,D, & E were used) and simple objects (an
apple, a banana and a cup were used). Several versions of each
stimulus were used, hand-drawn by different people. Their program
achieved 100% classification accuracy after training when generation
of new transforms was used, but only about 60-80% accuracy when
it was not used. Their data seems to indicate that the generation of
links in a selective fashion in a neural network can be a powerful
technique in improving network performance. The question is, is
generation of links, rather than simple weight change in a more
highly connected network, a biologically plausible process? Recent
neurophysical evidence has suggested that it is (Greenough & Bailey
1988, Honavar 1989).

6.4. Separating Figure from Ground
Kienker, Sejnowski, Hinton, and Schumacher (1986) applied

connectionism to the classic perceptual problem of separating figure
from ground, using connectionist ideas. This perceptual process is
illustrated by Rubin's famous illustration, containing two faces which
form a vase, in which figure and ground are reversed (see Figure
6.8). In one interpretation the black vase is in the foreground (the
"figure" in "figure and ground) against a white field ("ground"); in
the other interpretation, the two faces are the figures and the black
field is ground. Kienker and his co-workers cite psychological
experiments (Ullman 1984) which show that subjects can quickly
(within a few tenths of a second) determine whether or not a dot
shown in conjunction with a closed figure, is inside or outside of a
the figure. This leads one to believe that figure-ground
discrimination is a fairly basic perceptual process.

Kienker and his co-workers start not with literal image data
but with slightly higher level information. The units are in several
planes; each plane consists of a grid of units. One plane consists of
"edge" units, that is, units representing edges in the image. Another
plane consists of figure units, an array of units that determine
whether or not a particular pixel in the image is in the figure. The
determination of whether or not a particular pixel is in the figure is
a function not only of the image itself but of "attention"; that is,

186 Visual Perception and Pattern Recognition

some higher-level process will clamp some of the figure units to on,
so as to attend to that particular part of the image, and bias the
system into arriving at a figure containing those units. Shifting
attention is what accounts for the shifting perception of the faces and
the vase in the Rubin illustration.

The figure units were
arranged in a 20x20 grid in their
simulations. Weights ranged from
-15 to +15, in integer values. Each
unit is connected to its eight
neighbors by excitatory
connections, with a weight of +10.
Each location in the image has an
edge unit for each orientation that
is represented; in their simulation Figure 6.8. A famous illustration by
only horizontal and vertical Rubin, in which figure and ground are
orientations were supported. Each reversed between one interpretation and
edge unit has connections to the another. Form Kienker et al. (1986).
figure units in its immediate Reprinted by permission,
neighborhood. The orientation of the edge unit does not represent
the orientation of the edge itself, but rather represents the direction
in which the figure can be found.

An edge unit reinforces (with a connection strength of +12)
the figure unit it is immediately pointing towards, as well as the two
units immediately flanking that unit (+10); it has negative
connections with the unit it is pointing away from (-12) as well as the
two units immediately flanking it (-10). All connections in their
network are reciprocal.

Each edge unit inhibits (-10) the unit with the opposite
orientation. Making edge units excite flanking units as well as the
units that they directly point to allows edge gaps to exist in the
image, without disrupting the figure/ground discrimination. They
also connected pairs of edge units that could represent comers; units
representing possible comers were connected with a positive weight
(+5), and units representing impossible comers with a negative
weight (-5) (see Figure 6.9).

Attention was implemented by training a Gaussian "spotlight"
on a region in the figure units. A figure unit is distance d from the
center of the attention received an excitatory input equal to

Ae-(d/s)2

Neural Networks in Artificial Intelligence 187

where A is the amplitude of the spotlight and a the width of the
spotlight.

Kienker and his co- Possible Impossible

workers use the Boltzmann
machine update rule to
perform relaxation in the
network (see section 2.10). In
the Boltzmann machine, the
weights are fixed. They use
simulated annealing on their
Boltzmann machine, whereby
the temperature T (which
corresponds to the amount of
noise that is allowed to affect Figure 6 9 Impossible and possible
the network) is initially high combinations of edge units. From Kienker et
and is reduced gradually over aL <1988>- rePrin,ed h? I®”***-
the course of the relaxation. The result of the relaxation is to
establish a stable pattern in the figure units, so as to establish the
discrimination between figure and ground.

Kienker and his co-workers tried their network out on a
variety of shapes, ranging, in complexity, from a rectangle to a
spiral. They performed 2000 random unit updates per iteration,
since their system consists of 400 edge units in each of the four
orientations, plus 400 figure units, for a total of 2000 units. Each
unit can expect to be updated once, although due to the stochastic
nature of the algorithm, some units will be updated more than once
per iteration and some will not be updated at all. They carried out a
maximum of 148 iterations over the course of the simulated
annealing, over which the temperature was gradually reduced from 1
to 0. However, most of the trials reached stable states long before
148 iterations.

For a simple rectangle with all the edges specified, most of the
trials resulted in convergence to a correct final state in under 40
iterations. If only the comer edge units of this rectangle were
specified, then most trials reached a correct final state within 60
iterations. The increased time is required for the activation to
spread properly and the border between figure and ground become
properly established, in the absence of edge units. The ability of the
network to create the correct interpretation of the figure, with only
comers present, reflects human performance nicely. For a third

188 Visual Perception and Pattern Recognition

input, a C-shaped closed figure, convergence to a solution occurred
more slowly, because of the concave region on the inside of the C,
which is reinforced by neighboring figure units, but not by
neighboring edge units. For this figure, most trials stabilized before
100 trials.

Kienker and his co-workers compared their stochastic
algorithm with a deterministic (Hopfield) algorithm, with a strict
binary threshold rule. The deterministic algorithm is only
guaranteed to converge to a local minimum energy (see section 2.8).
not a global minimum If there are no holes in the edges, then the
deterministic algorithm is equivalent to a "spreading ink" algorithm;
activation in the figure units spreads and is contained by the edge
units. If there are holes in the edges, or the width of the Gaussian
spotlight of attention is too large, activation will "leak" out of the
contained figure. Thus, for a closed figure, the spotlight has to be
finely focused on the figure itself, in order for the deterministic
algorithm to work.

Kienker and his co-workers’ attempt to find the correct
solution for an enclosed spiral failed in a majority of trials, using
simulated annealing. If the cooling proceeds more slowly, they can
anneal to the correct solution; one trial proceeded to a correct
solution after 961 iterations.

They tried to introduce variability into the temperature
distribution by introducing random factors, one per unit, that
multiplied the global temperature to create a local temperature for
each unit. This was closer to the behavior of a true physical system.
However, this did not affect the network's performance to a
significant extent.

6.5. Determining "What" and "Where" in a Visual Scene
Rueckl, Cave, and Kosslyn (1988) consider a classic problem

in visual perception from a connectionist standpoint. This is the
separation of the information about an object into (1) the location-
independent description of the object, and (2) where it is in the visual
field (and what view is given,, that is, as they term it, "what and
where". The question that they address in this work is whether the
methods of determining "what" and "where" are consolidated in a
single mechanism ,or in two parallel mechanisms.

They constructed two systems to address this question. Both
systems received input from a 5x5 array of binary-valued inputs.

Neural Networks in Artificial Intelligence 189

The different "objects" that could be formed each consisted of a
pattern in a 3x3 grid. Each of these patterns could be centered on
any of the 9 units in the 5x5 grid that were not on its edge. Only one
pattern was present in the input at any given time. Thus the state of
the input units could be completely described by a pair of numbers
each having a value between 1 and 9, the first describing the shape of
the stimulus and the second describing its location.

Rueckl and his co-workers used a three layer feed-forward
system, in which the bottom layer consisted of the 25 input units, and
in which there was a middle layer of 18 hidden units, and an output
layer of 18 units. Nine of the output units described "where" and
nine described "what", that is, one of the output units corresponded
to each position and one corresponded to each shape. Thus a correct
output pattern had exactly two output units activated, one of the
"where" units and one of the "what" units, in a local representation.

The authors refer to their two systems as the "split" and
"unsplit" systems. In both systems, all of the input units are
connected to all of the hidden units. In the unsplit system, all the
hidden units are connected to all of the output units as well. In the
split system, the hidden units are divided into two groups of nine
each, one group being completely connected to the 9 "where" output
units, and the other group completely connected to the 9 "what"
output units. Thus the number of connections in the split system was
half that of the unsplit system. The split system, above the input
units, was effectively two parallel systems

Rueckl and his co-workers trained both models on random
sequences of input patterns in which all valid inputs were presented,
using back-propagation to teach the model to arrive at the correct
output. Both models learned the task, but the unsplit model learned
it faster. After 300 learning cycles, the unsplit model was producing
significantly less error than the split model. They suspected that this
was due to the differences in the difficulty of learning the "what" and
"where" tasks, so they looked at the sum-squared error in each of the
two subsets of the output units, in each of the two models. It turned
out that both models exhibited rapid and similar convergence on the
units representing location, and the difference between the two
models is mainly in the speed of convergence to the correct pattern
on the output units signifying the shape of the stimulus. This led
Rueckl and his co-workers to conclude that location was easier to
learn, because the input patterns representing a given location were

190 Visual Perception and Pattern Recognition

more similar to one another (in terms of shared activation) than the
input patterns representing a given shape were to one another.

This in turn led them to consider dividing the hidden units
between the two tasks in an asymmetrical way, so as to allocate more
of the hidden units to determining shape. The "12-6" split model
allocated 12 of the hidden units to shape and the remaining 6 to
location. They tested this model against the original (9-9) model and
15-3 and 14-4 models. They found that the 14-4 and 12-6 models
converged to a solution significantly faster than the unsplit model,
while the 9-9 and 15-3 models did worse. This clearly shows that a
correct allocation of units to the two problems is critical; too few
units allocated to either task leads to degraded performance.

They noticed that the unsplit model did better than any of the
split models in the early phases of learning, although the 14-4 and
12-6 models did better asymptotically. They attributed this to the
fact that the unsplit model has more connections.

They explored the nature of the receptive fields of the hidden
nodes. There were hidden nodes whose connections to the input units
detected alternating stripes of activation and inhibition, in either a
horizontal, diagonal, or vertical direction. These were useful in
detecting shapes in a position-independent manner. Another group
detected activation along the borders of the input array. Yet another
group were sensitive to a single strip of input activation at some
orientation Some nodes seemed to have no particular rime or reason
to their receptive fields, and some were specialized to detect a
localized configuration of features. All these types of hidden nodes,
taken together, were able to provide the output units with
information about "what".

The "where" hidden nodes included "border nodes", as above,
as well as nodes with excitatory areas in the receptive fields. With
few hidden nodes devoted to the "where" task, the size of these
excitatory areas was large, because relatively coarse coding was
necessitated. As more hidden units are assigned to the "where" task,
eventually each node comes to represent only a single location in the
input.

In the unsplit network, the hidden nodes had strong output
connections to both the "what" nodes and the "where" nodes. The
unsplit network did not spontaneously develop the specialization
required by the split network. There were similar types of nodes, in
terms of their receptive fields, in both the split and unsplit netwoiks,
but their frequency distribution differed. There are more

Neural Networks in Artificial Intelligence 191

continuous-region detecting nodes in the unsplit system, suggesting to
Rueckl and his co-workers that location was more important in the
unsplit system.

They made a classification of the shapes by various properties.
Does a shape have a single vertical or horizontal stripe? Is it skewed
to the right, left, top or bottom borders of the visual field? Is it
strongly horizontal or vertical (that is, does it have more than one
horizontal or vertical stripe)? These classifications were based on
the response specificities of particular hidden nodes. They used
multi-dimensional scaling analysis of the weights (Shepard 1962) to
show that single-stripe and border patterns are more important in the
unsplit system compared to multiple stripes, which were more
important in the split system. Thus they quantitatively showed the
effect that they observed just by looking at the network itself
directly.

The multiple stripe detectors were position-independent. Thus,
their added importance in the split model indicated that the split
model was more able to incorporate position-independent factors in
the determination of what the shape of the stimulus was. The unsplit
model was unable to do this because the hidden nodes were involved
in computing both "what" and "where" spontaneously.

Rueckl and his co-workers argue that, in the unsplit model, the
computational resources (hidden units) that could be allocated to
improve performance on the shape task are, in the unsplit model,
instead allocated to improve location performance, even though the
shape task needs them more. This prevents the unsplit system from
arriving at the solution arrived at by the best of the split systems,
that it could have in principle arrived at, since it had all the
connections of the split system, plus more.

Their experiments support their hypothesis that a neural
system will more readily adapt to computing shape and position if it
uses separate computational resources for each of these tasks, and
provides a plausible explanation for why the brain does so. It also
provides a plausible account of why the primate visual system
devotes many more nerve cells to areas that compute shape than
those that compute position.

They note that the requirement that shape and location
information be available separately for later processing in other
systems places no constraints on how these separate pieces of
information are computed; they note that both the split and unsplit
systems satisfy this criterion. Thus this criterion alone is no

192 Visual Perception and Pattern Recognition

explanation as to why the brain devotes separate regions to the two
tasks.

They note that the primate visual system is enormously more
complex than their system, presumably because it has much more
complex recognition tasks—many more shapes at many more
positions. This raises the question: does their model "scale up" to
this larger size? Further experiments may answer this question.
6.6. Linking Visual and Verbal Semantics

Lakoff (1988) makes an analogy between connectionist
models and a variety of linguistic theory that he and others have been
advocating, cognitive linguistics (Lakoff 1987, Langacker 1987). A
central concept of cognitive linguistics is the idea of cognitive
topology. Cognitive topology relates linguistic concepts—such as
simple prepositions like over, under, in, and through—to spatial
concepts in topology. For instance, Lakoff gives the example of
people watching a game of ping-pong. The ball is described as going
over, under, or into the net, and people are able to make these
descriptions despite that there are literally an infinite number of
trajectories that the ball can take. (In ping-pong, of course, the ball
rarely goes under the net; but it is possible; volleyball might have
been a better choice.)

The explanation that Lakoff gives is that people use topological
descriptions of space in forming these concepts. These concepts
include BOUNDED, REGION, PATH, OBSTACLE, etc. Lakoff
claims that, since much of our experience of the visual world is
universal, these are universal concepts in human language. He notes
that "in" and "out" use the concept of a BOUNDED REGION, that
"across" uses the concept of PATH, etc. This spatial reasoning
underlies much of language and explains much metaphor, according
to Lakoff. For instance, he gives the example of a couple whose
relationship has "hit a dead-end street". This is a pervasive spatial
metaphor which, Lakoff claims, is used with all sorts of actions. In
this metaphor, according to Lakoff, "TRAVELLERS correspond to
LOVERS, THE VEHICLE corresponds to THE LOVE
RELATIONSHIP, ... THE PATH corresponds to THE COURSE OF
THE RELATIONSHIP, etc.". Because of the pervasiveness of this
metaphor, Lakoff sees cognitive topology as central to a theory of
language.

Preliminary work has been done in linking cognitive topology
to visual data using a connectionist paradigm (Regier 1988) (see the

Neural Networks in Artificial Intelligence 193

next section). The hope is that a natural bridge can be built between
cognitive topological concepts such as prepositions, and images, as
each is represented in a neural network.

Lakoff presents a series of convergences between the ideas of
cognitive linguistics and connectionism. The basic analogy is that a
pattern of weights in a neural network corresponds to a linguistic
pattern, which is a meaningful symbol because of its causal relation
to stimuli. Both cognitive linguistics and connectionism view
semantics and phonetics as "autonomous", because they are based,
respectively, in the sensory and motor systems; syntax and
morphology are patterns of connections between semantics and
phonetics. This is in sharp contrast to generative grammar, which
relies on recursive rules and manipulation of symbols. It also denies
Chomsky's (1980) concept of "autonomous syntax", whereby syntax
is viewed as the product of a module in the brain employing a
generative grammar, and cut off from semantics and phonology.
Lakoff also, in a quite general manner, draws analogies between the
two theories in regards to how patterns of activation are combined,
how patterns vary and inherit properties, how they express partial
activation of a concept, how concepts are defined, how metaphor is
expressed, etc. He then goes on to outline how the basic concepts of
cognitive linguistics could be defined in connectionist terms.

6.7. Recognizing Image-schemas
Regier (1988) attacks the problem of recognizing image-

schemas, which are cognitive models of an image-based situation;
that is, topological descriptions of the spatial relationships in an
image. Image schemas are not static, but may contain descriptions of
motion. His system handles images containing objects, represented
by a binary array of pixels. His system uses Ullman's (1984) concept
of "visual routines", which consist of simple procedures for
performing simple visual tasks, such as detecting enclosed spaces,
completing a boundary, etc., as well as rules for combining
primitives to form more complex ones.

His system consists of an image net, two object nets, a closed
object net, and three working image nets. The user manually selects
two objects out of the image stored in the image net, and these are
placed in the two object nets. The object in the first object net,
called A, is in some relation to the second object—B, e.g. "in",

194 Visual Perception and Pattern Recognition

"into", "outside", "out-of", and "over"—these are the five
prepositions that his system was designed to handle.

After object B is copied to its object net, it is copied to the
closed object net. There it is closed by detecting its endpoints and
connecting them, using a connectionist version of standard
algorithms for doing this (Rosenfeld & Kak 1976). He then copies
object A into the working image nets, and performs what he calls
"bounded spreading activation" on it. That is, when he is testing
whether object A is in B, activation spreads out from object A, but is
not allowed across the boundary of B (now closed). If activation
ever reaches the edge of the net, then A is not in B, otherwise it is (B
has contained the spreading activation). When he is testing whether
A is over B, activation "rains down" from A to cells in the net below
it. If there is activation on both sides of B on the bottom of the
working net, then A is over B, in the sense of being above B and
having either moved over or extended across B. (The sense of over
as "above" alone is handled more simply.) He handles the concepts of
"into" and "out o f as transitions from being in the state of being
outside to the state of being inside, and vice versa, respectively The
three working nets are needed for the spreading of activation in
multiple time frames. He performs two types of "focusing" in these
working nets; (1) path-focusing, in which the entire path of an object
is stored in one of the working nets and (2) end-point focusing, in
which the object is shown at an endpoint of its path.

The system Regier has implemented has more of the flavor of
a procedural array processor rather than a connectionist system. It
would be interesting to see it implemented into a more strictly
connectionist implementation that does not depend on outside control
(which Regier implements as a sequencer network, after Jordan
1986b, that controls the activation function of the other networks!)
This is rather unorthodox connectionist work.

7
Language Understanding

7.1. Introduction
Natural language is one of the most challenging areas for

connectionists, since it contains a good deal of recursive structure
that is readily handled by recursive symbol-manipulating languages
such as LISP and PROLOG. How to handle language in a
connectionist network is not as apparent.

As in the case of speech understanding, the words of a sentence
can be input to a neural network in two ways; one word at a time in
serial succession to the same set of input units, or each word to its
own whereupon all the words are processed in parallel. Both of these
approaches have been taken in the various pieces of research
discussed in this chapter.

The first work we discuss, that of Servan-Schreiber and his
co-workers (1988), investigated the processing of linguistic data
serially in a recurrent network. Their linguistic data was generated
by a finite-state grammar. Finite-state grammars are among the
simplest known, but they have the property, which is also
characteristic of natural language, that which symbol appears at any
point of a valid string of symbols is a function of the symbols that
preceded it. Thus any system that can distinguish between strings that
are in the language specified by the finite state grammar, and those
that are not, must have some memory of the previous symbols
encountered. In this system, this is handled by the recurrent network
of Elman (1988). This work illustrates the usefulness of recurrent
networks for serial processing* but for realistic natural language
processing, finite-state grammars are insufficient. Below we discuss

196 Language Understanding

systems that parse context-free grammars based on production rules.
These systems are more relevant for natural language processing.

Before doing this, though, we discuss systems that attempt
sentence understanding. Some of the first work done on sentence
interpretation with connectionist systems was done by Waltz and
Pollack (1985). Their system, like several of the others discussed in
this chapter, is not completely connectionist, because they used a
conventional chart parser (Kay 1973) to create the parse trees that
were used as input to their system.

The purpose of their system is to resolve lexical ambiguity.
They do this by creating a network in which there is one (local) node
for each interpretation of each word, and all compatible
interpretations of different words reinforce one another; all
incompatible interpretations inhibit one another, each parse tree of a
given sentence reinforces the particular semantic node that is
compatible with their interpretation of the syntactic category that a
word belongs to, in the case of words that have multiple syntactic
categories, depending on their use Relaxation brings the semantic
network into a state reflecting a consistent sentence interpretation.

Like Waltz and Pollack, Cottrell and Small also developed a
model of sentence interpretation and word-sense disambiguation.
Instead of having an intensional semantics based on reinforcing and
inhibiting connections, Cottrell and Small use a representation for
each verb in terms of a case frame, which plays an important role in
determining the interpretation of words and sentences via
connections between word sense nodes and case role nodes. A case
frame is a data structure that is associated with a verb that has slots
for all the noun phrases involved in the action. Again, compatible
nodes reinforce one another, and incompatible nodes inhibit one
another, and again, relaxation creates a consistent sentence
interpretation.

We also consider another system that does case semantics, that
of McClelland and Kawamoto (1986b). The systems of Cottrell, and
of Waltz and Pollack, do lexical semantics; that is, they resolve
ambiguities in the interpretation of words in a sentence. McClelland
and Kawamoto's system fills in all the slots of the case frame of a
verb: for instance, for the verb "to rent", these might be the lessor,
the lessee, the thing rented, the period of time, and the amount of
money charged.

They use a microfeature representation of words. Their input
is a sentence, and their output is a series of case fillers, in a

Neural Networks in Artificial Intelligence 197

particular order. They use rather complex distributed
representations of these. The network is trained using sentence/case
filler pairs using a simple two-layer perceptron with no hidden units
and the perceptron convergence procedure. The system was able to
learn the training set and to generalize on it; it even formed defaults
for missing case fillers. Because of their emphasis on compositional
semantics, McClelland and Kawamoto's work is closely related to the
work on knowledge representation along these lines that was
discussed in Chapter 4.

We consider five approaches to parsing with networks, those
of Hanson and Kegl (1987), Li and Chun (1987), Chamiak and
Santos (1987), Selman and Hirst (1987), and Fanty (1985).In all of
these except Hanson and Kegl's work, the system creates in the
network structures that contain or resemble parse trees.

Hanson and Kegl's work on PARSNIP is similar to Sejnowski
and Rosenberg's NETtalk (see section 5.7), except that it is applied to
parsing sentences instead of turning them into speech. Like NETtalk,
PARSNIP uses a three-layer feed-forward network composed of
input, hidden, and output layers. Unlike NETtalk, and like Cottrell
and co-workers' image compression system (see section 2.31),
PARSNIP is auto-associative. The "parse" is built up in the hidden
units. There are fewer hidden units than there are input units, so the
hidden units act as a bottleneck that must compress the information
inherent in the structure of the input sentence. They succeeded in
training their network in auto-associative manner. Their network
was able to perform a sentence completion task in which a word
category left out of the input was inserted in the output by the
system. They did not completely analyze the behavior of the hidden
units, but they found that there were certain units that learned to
respond to constituents such as noun phrases or verb phrases.

Both Chamiak and Santos, and Li and Chun, developed
approaches to parsing that were not strictly connectionist, but
remained roughly so in flavor. Both systems have connections
between nodes in a network, but allow the execution of local
programs associated with each node to enforce rules or constraints.
Chamiak and Santos represent a parse tree in a set of nodes arranged
in a table, and allow connections between nodes which contain
symbols for the various constituents of a sentence. Rules in each node
control the kinds of connections each can make with neighboring
nodes.

198 Language Understanding

In Li and Chun's system, there is a network which embodies
the entire context-free grammar that the system is set up to
understand. There is a node for the left side of each grammar rule,
which is connected to nodes for each constituent on the right side of
the rule, below it. The system operates by passing markers, which
represent sentence constituents, upwards, and constructing parse
trees with programs associated with each node which access global
data structures. At the bottom level nodes for terminal symbols all
receive any input appropriate to them; nodes above them need to
receive all necessary markers to make up a rule, in the proper order.
Part of each marker is the location of that constituent in terms of
which words in the sentence it encompasses; higher-level constituents
must be made up of markers (constituents) that are adjacent in the
sentence. By passing this location information, Li and Chun avoid the
approach taken by Fanty, which is to have a large number of units to
represent each possible rule in every sentence position.
Unfortunately, Li and Chun are forced to augment connectionism
with symbol passing and complex operations in each node, in order
to accomplish this.

Fanty (1985), like Li and Chun, and Chamiak and Santos,
developed a connectionist system to parse context-free grammars.
His is a multilayer system in which there is a node for every rule, at
every sentence position, connected to every set of symbols which
could compose the right-hand side of the rule. This leads to a very
large number of units. Like many other connectionist parsing
systems, Fanty's system is hierarchical; rules containing more
complex constituents are higher up in the network. His system parses
in two "waves", a bottom-up one and a top-down one. Activation is
sent up the network to the start symbol at the top, and this symbol
then sends another wave of activation down. At the end, the only
fully activated units in the network comprise a parse tree for the
sentence; all partially activated sub-trees that did not receive top-
down activation are not included.

We conclude the chapter with a discussion of two models of
human processing of language that attempt to account for
psychological data.. The first is Rueckl's (1986) model of letter and
word identification in reading; the second is Rumelhart and
McClelland's (1986a) model of learning the past tense by children.
We review an elaborate critique of this latter model by Pinker and
Prince (1988).

Neural Networks in Artificial Intelligence 199

Rueckl's work was partly motivated by a desire to explain the
word repetition effect, which is that subjects recognize words that
they have recently seen better than those they have not. In order to
explain this phenomenon and related phenomena in reading, Rueckl
developed a three-level model. The first level extracts features from
the visual field; the second level expresses these features in object-
centered coordinates, and the third level performs object
identification. In order to account for people's ability to give the
same representation to visually disjoint objects, such as "a" and "A",
he adds a fourth module, which stores these correspondences, and
passes them to the object identification module. The word repetition
effect is accounted for by the hypothesis that the system comes to
recognize an object by relaxation; if an object has recently been
activated, relaxation proceeds faster, since the network is closer to its
representation in weight space than it would otherwise have been.

Rumelhart and McClelland's model of the development of the
formation of the past tense in English parallels the behavior of
children. The model proceeds, over the course of learning, from no
knowledge of how to form the past tense to the ability to form it
using ”-ed". This rule (in both their system and in children) is over
generalized, forming non-words such as "taked". Both children and
the system learn to correct this over-generalization, and even learn
rules applying only to the formation of the past tense in specific
classes of irregular verbs (for example, take becomes took, shake
becomes shook, etc.)

Both the input and output of their system use distributed
representations of the phonological features of the words in question.
Each word is represented by a sequence of wickelphones, which are
phoneme symbols surrounded by the symbols of the phonemes
immediately to their left and right. These wickelphones are
represented as patterns of activation across a set of units called
wickelfeatures. The system consists of a layer of wickelfeatures for
the input word completely connected to a layer of wickelfeatures for
the output. Because the system has no hidden units, like McClelland
and Kawamoto's model of the comprehension of verbs, it was trained
using the perceptron convergence rule. It learned the past tense
formation task in the manner described above. The rules it learned
were implicit in the connections and weights. The distributed
representations made feature detectors in the form of hidden units
unnecessary, since the wickelfeatures already represented various
conjunctions of wickelphones.

200 Language Understanding

Pinker and Prince (1988) developed an elaborate critique of
Rumelhart and McClelland's model. They criticize the wickelfeature
representation as being inadequate to all the possible phonetic
transformations that are found in human languages.

Pinker and Prince's main point is that many linguistic and
morphological transformations, such the addition of an "s" at the end
of a word, are used in many contexts in English and other languages.
An associationist approach to the creation of these inflections does
not allow an independent rule system to be generalized across a
series of different contexts. Yet the fact that the rule is applied
uniformly across a variety of contexts leads one to believe that each
inflection does not have its own representation of the rule. Of
course, much of this criticism is due to the limited nature of
Rumelhart and McClelland's model. It must be kept in mind that a
larger scale linguistic model, that would handle parsing, semantics,
and morphology in parallel, would not treat each inflection
independently, but would integrate linguistic information from
various domains. Thus, for instance, some units might be devoted to
the "s" inflection, but would perform this inflection in a variety of
contexts, depending on information received from other subsystems,
including one that does parsing.

7.2. Processing Finite State Grammars Sequentially
Servan-Schreiber and

his co-workers (1988) discuss
an algorithm for dealing with
sequential data such as that
given in natural language.
They investigate a proposal
by Elman (1988) whereby a
connectionist system can
"remember" earlier stimuli
given to it. He starts with the

Figure 7.1 Architecture of the system of
Servan-Schreiber et al. (1988) Reprinted by
permission.

usual three layer system of input, hidden, and output units, and adds
a fourth set of units, the context units (see Figure 7.1). At each time
slice the contents of the hidden units are copied into the context units,
and they in turn feed back into the hidden units during the next time
slice (that is, when the next input is given).

Neural Networks in Artificial Intelligence 201

s

Figure 7.2 The finite-state machine of Reber (1967). From Servan-Screiber et al.
(1988). Reprinted by permission.

Servan-Schreiber and his co-workers apply this model to
learning the grammar specified by the finite-state machine devised
by Reber (1967) for his language learning experiments (see Figure
7.2). There were five symbols in the alphabet of the language
specified by this machine. There were seven input units
corresponding to the five symbols, and a start and finish symbol.
The output units were used to predict the next element in a (legal)
sequence representing the language. Thus there were seven output
units. There were also three hidden units and three context units,
which functioned as described above. The network was trained using
back-propagation, with 200,000 strings of varying length as stimuli.

Since there are two alternatives at each juncture in the finite-
state machine, except at the final symbol, the best performance that
could be achieved would activate each of the two output nodes
corresponding to these two symbols equally when the system reached
that juncture in its input, and no other nodes at all.

Servan-Schreiber and his co-workers' network does this,
roughly, although there is some stray activation seeping to the other
nodes, and the ratio of the activation of the two nodes varied
somewhat from one. A string was considered "rejected" if no output
node was more than 30% activated after presentation of any of the
symbols in the string. The system was presented with 20,000

202 Language Understanding

randomly generated strings that were in the grammar, and it
accepted all 20,000 of them. It was also presented with 130,000
randomly generated strings of the five symbols, of which 0.2% were
in the language. All of them were rejected except for this 0.2%.

Servan-Schreiber and his co-workers analyzed the internal
representations that the network used, starting from the assumption
that these patterns must encode the position of the current input in
the total string. In fact, analysis of the activation patterns showed
that the system grouped together—that is, had similar patterns of
hidden unit activation—for all those string prefixes that arrived at
the same position in the finite-state machine. (String prefixes are
beginnings of strings.) There were five such clusters in the patterns
of activation, corresponding to the five nodes in the automation other
than the start node. Within each cluster, the patterns were further
divided into those whose corresponding input string had a similar
"history" with respect to which nodes in the finite state machine had
been previously visited.

They note that the network is readily interpretable because of
the fact that there are only three hidden units. More hidden units
would have resulted in more redundancy and more distribution of
information. If insufficient hidden units are provided, then the
network may not achieve adequate performance—inadequate
performance occurs even with three units under some initial
configurations of weights and timing sequences.

The machine described above basically functions in the same
fashion as the "memory-less" finite-state automaton—it represents
mainly information about the current node, and information about
the path to that node that is needed in order for the system to
function correctly.

In their second training experiment, Servan-Schreiber and his
co-workers trained the network on the set of grammatical strings
with lengths less than or equal to eight. There are 43 such strings
generated by Reber's automaton. They used 21 of these strings to
train the network, and the remaining 22 to test its performance.
They presented the 21 training strings repeatedly until no
improvement in performance was noted; this took 2,000 training
cycles. After training, the network was tested on the remaining 22
strings, which contained a total of 165 symbols. It incorrectly
predicted the successor of ten of these symbols. There were also ten
cases where the symbol had two legal successors, and the system
predicted only one of them.

Neural Networks in Artificial Intelligence 203

The representation learned in the hidden units differs
somewhat from the first training set, because now the system
"knows" that the strings must be of a limited length. Thus, for
instance, if the network sees an X in position 7 of a string, it knows
that an S must follow (this should be clear if you look at the
automaton).

The cluster analysis of the hidden unit patterns produced in
this second experiment revealed that the network clustered together
partial sequences that led to the same prediction, partial sequences
that ended in the same letter, and partial sequences that ended in the
same node by taking similar paths. Thus path information, as well as
node information, is incorporated in the representation, which was
not the case in their first training experiment. This results directly
from the fact that string length information is useful for the network
to perform well in this task, and the best way to do this is to encode
information on the path taken, which amounts to much the same
thing.

Servan-Schreiber and his co-workers analyzed the learning
process for a slightly simpler machine, and discovered that it divides,
roughly, into phases. In the first phase, little learning has occurred,
but the network produces different responses to different symbol
inputs. In the second phase, the individual letters presented are
grouped by what prediction (output) they make. Here the network is
ignoring the context units. Then the network learns to pay attention
to the context, which basically encodes what letter preceded the one
that is currently being presented. At this point, it is learning
associations between pairs of letters—the input letter and the one that
preceded it—and the desired successor. In the final stage of
learning, it learns to "remember" farther into the past, beyond the
immediate predecessor, to find clues about what should follow. It is
able, in the case of the first learning experiment, to use this
information about the past to effectively determine the node in the
finite-state machine at which it finds itself at any given point in its
input stream.

The network has more difficulty "remembering" the further
back in the input that the relevant information is. For instance,
Servan-Schreiber and his co-workers consider the two sequences
"PSSS" and "TSSS", which require the successors "P" and "T"
respectively. When of the final "S" in each sequence is presented, the
two networks (one processing each string) would have to have
different internal representations (in the hidden units). The only

204 Language Understanding

way this could occur is if a discrepancy is retained from the initial
letter, since all the S's are the same in both cases and could not have
caused the difference. They observed that the amount of time needed
to train the network was an exponential function of how far, in terms
of the number of symbols, into the past it was being trained to
remember.

Language processing requires the listener to remember
constituents across arbitrarily long sentences of words. One example
of this is in embedded clauses. For instance, in the sentence "the man
who ran for governor sang a song", the listener must remember,
when he or she hears the word "sang", that the subject of this
sentence is "the man" despite the fact that there is an intervening
clause. This problem is a generalization of the problem of a
repeating letter discussed above. They studied it by using a more
elaborate finite machine in which the strings in the language
generated by the original (Reber's) machine was surrounded by
either P’s or T’s (see Figure 7.3).

S 0 .3

Figure 7.3. An elaboration on Reber’s original automaton. From Servan-Schreiber
et al. (1988); reprinted by permission.

Neural Networks in Artificial Intelligence 205

If the transition probabilities are all equal to 0.5 in this
machine (since there are two choices at each junction), when the
training set of strings is generated, the network is unable to correctly
predict a final T from an initial T or a final P from an initial P.
Only if the strings surrounded by P's have a different statistical
sample size from those surrounded by T's in the training set is the
system able to learn to complete a string correctly. In other words,
the initial symbol must be somehow encoded in the embedded
sequence in the training set, which is what the network is quite poor
at doing.

Thus this particular implementation of the embedding problem
as a network was not very successful. The authors take an optimistic
view of this, noting that small statistical differences in the training
set are sufficient to create differences in performance on the
completion task. They note that these simple recurrent networks are
limited to "paying attention" to what immediately preceded a given
symbol in the input; thus they are not applicable to context-free and
more complex grammars in which totally independent sequences may
be embedded in a certain string. Nevertheless, they have modeled an
important aspect of language processing, to a limited extent: the
speaker's expectations at any given point of the flow of speech.

7.3. Sentence Interpretation
Waltz and Pollack (1985) combine knowledge from a variety

of sources in their connectionist model of sentence interpretation.
Their approach is reminiscent of the HEARSAY II speech
recognition system (Fennel & Lesser 1977).

They use a chart parser (Kay 1973) to create a parse
represented as a network which contains several parse trees
corresponding to syntactically valid readings of the sentences. Two
non-terminals in the grammar that, at the same level in the network,
ultimately contain the same words as constituents, inhibit one
another; all child-parent connections are excitatory. Thus relaxation
will result in a single unambiguous interpretation of a given
sentence.

Waltz and Pollack view the resolution of lexical ambiguity as
concurrent with parsing. When a word is activated, their system
activates a network that represents all of its meanings; a set of nodes
representing the word's alternate senses and lexical categories. All
of the meanings inhibit one another, each meaning excites the lexical

206 Language Understanding

category the word is a member of, given that meaning, and inhibits
all the rest of the lexical categories in the network. Finally, all the
lexical categories inhibit one another. For instance, the word "shot"
has four meanings, and so there are nodes corresponding to "tired",
"bullet", "fired", and "wasted". "Tired" is an adjective; "fired" and
"wasted" are verbs (in these meanings), and "bullet" is a noun (as in
"buckshot"). There are nodes corresponding to "noun", "verb", and
"adjectivethe "tired" node excites the "adjective" node and inhibits
the "verb" and "noun" (the same connections are made in the reverse
direction), etc.

Figure 7.4. A network from Waltz and Pollack (1985) for interpreting the sentence
"John shot some bucks" in the two contexts of hunting and gambling. Reprinted by
permission.

A network for the sentence "John shot some bucks" is shown
in Figure 7.4. This network is shown in the context of the node
representing hunting being activated, as opposed to the node
representing gambling being activated, that is, the sentence is taken
to mean "John fired at some male deer" rather than "John wasted
some money". When the node for the hunting context and the active
syntactic categories are clamped at high activation, the network

Neural Networks in Artificial Intelligence 207

relaxes to a state which reflects the correct interpretation of the
words "shot" and "bucks" in hunting. Nodes representing lexical
categories that are the same in the lexical and syntactic portions of
the tree activate one another as one can see by looking at the figure.

Figure 7.5. Network for disambiguating "The astronomer married a star." At this
point, early in the relaxation, the incorrect interpretation ("star" as celestial body) is
winning (dark nodes), but it soon will be defeated by the correct one ("star" as
celebrity). From Waltz and Pollack (1985); reprinted by Permission

Waltz and Pollack's system exhibits the same sorts of "double-
takes" as people do with sentences such as "the astronomer married a
star". Many people upon hearing this sentence, briefly think that the
astronomer married a celestial body, but then realized that s/he
married a movie star, since one can't marry a celestial body (bad
puns aside). This is modeled by their network’s performance in
Figure 7.5. Initially, the meaning of "celestial body" for "star" is
highly activated by both the word "star" and the node for
"astronomy" which has been activated by "astronomer". The node

208 Language Understanding

for "movie star" is not highly activated, since activation has not yet
propagated through the node for "marry" to the "spouse 2" node and
then to "movie star" as a plausible candidate for spouse 2.
Eventually "movie star" wins out, as activation from "marry" beats
activation from "astronomy". Of course this is dependent on the
assignment of weights: This raises the question of whether weights
alone are sufficient to convey the information that spouse 2 is
necessary to the marriage.

In Waltz and Pollack's system, context and semantics play a
major role in disambiguating syntactically and semantically
ambiguous sentences. "An astronomer married a star" is an
example of semantic ambiguity that their system handles well; their
system can also handle sentences like "John ate up the street", in
which one interpretation is wildly implausible, by using the semantic
network to render implausible the interpretation that what was eaten
is the street. Thus die syntactic and semantic/lexical parts of the
network, although each is localized, have connections which allow
them to work together at arriving at a plausible interpretation of a
sentence.

Waltz and Pollack advocate a knowledge representation
scheme in which the system's knowledge would be encoded in up to
hundreds of thousands of nodes, and there would be a large set of
microfeatures, on the order of a thousand. Each concept should be
associated with a set of microfeatures, which would be a subset of the
total set of microfeatures. These microfeatures, according to Waltz
and Pollack, should represent concepts that are broadly used by
people in dealing with a wide variety of situations. Their
microfeatures are not based on logical decomposition, but simply on
commonness and ecological usefulness. Waltz and Pollack note that
any hierarchies and sets that exist emerge as a result of concepts that
utilize the same subset of microfeatures. Since microfeatures are
shared by many concepts, they can serve as a context.

For instance, in the earlier example of "John shot some
bucks", they posit that the node for "hunt" might be connected to a
node for the microfeature "outdoors". If the sentence "John shot
some bucks" was preceded by "John and Mary drove to the cabin"
and the node for "cabin" was connected to the "outdoors" node as
well, then the "outdoors" node would be activated prior to the system
seeing "John shot some bucks", and then the "hunting" node would
be activated preferentially to the "gambling" node. If a number of
other microfeatures also reinforced the "hunting" node (and possibly

Neural Networks in Artificial Intelligence 209

inhibited the "gambling" node), then the bias would be even stronger
for the system to settle on the interpretation in the context of
hunting.

The microfeatures would make it possible to quickly converge
on the correct interpretation without necessitating a connection
between every pair of nodes in the system, since two concepts can be
connected indirectly, via one or more microfeatures. Waltz and
Pollack note that the microfeatures should be chosen in such a
fashion so as to discriminate any concept from all others.
Connections would be strongly positive between a concept and
microfeature (weight = 1), weakly positive (0.5), neutral (0.0), or
weakly negative (-0.5). It would be rare that a concept and a
microfeature to not be associated with one another. The set of
microfeatures that two concepts share can be viewed as encoding a
relation between them, so the association is not simple, as it would be
in an ordinary (unlabeled) semantic network.

Waltz and Pollack note that since the world tends to have
clusters of microfeatures that co-occur, the patterns of microfeatures
would not be uniformly and randomly distributed, but would tend to
cluster. They do not propose an adequate solution to the type/token
problem; if there is only one set of microfeature nodes, then only
one (or slightly more than one) concept can be active at a given time.
One would think that the microfeature nodes would have to be
duplicated in some way to handle complex thought patterns involving
the simultaneous activation of several concepts.

Waltz and Pollack discuss how the weights and connections
might come into being, and how they might be dynamically
generated. It would be interesting to see how any of the various
connectionist learning algorithms might be used to generate a
network like that used by Waltz and Pollack.

Bookman (1988) developed a model, MICON (Microfeature
Contexts which extends Waltz and Pollack's work. Like Waltz and
Pollack's model, MICON consists of nodes for word meanings,
words, syntactic categories, and semantic microfeatures. He also
adds a layer of timing nodes which delay the processing of the next
word until the current word has been fully processed. His system
performs word node relaxation followed by microfeature relaxation
in a cycle, and thus establishes a shifting context in which new
sentences can be interpreted.

210 Language Understanding

7.4. Word Sense Disambiguation
Cottrell and Small

(1983) approached the
problem of disambiguating
the meaning of a word with a
connectionist model. Their
model consists of four levels
(see Figure 7.6); the lexical
level, the word sense level,
the case level, and the syntax
level. At the lexical level,
there is a unit for each word Figure 7.6. Architecture of the model of
in the system. Each word has Cottrell and Small (1983). Reprinted by
one or more nodes at the permission.
word sense level, corresponding to each of the meanings of the
word, as in Waltz and Pollack's model. Each word on the lexical
level is connected to each of its meanings on the word sense level.
Each of the senses of a word, embodied in a node, inhibits all the
other senses of that word.

Case theory, as advocated by Fillmore (1968), holds that the
roles played by the various constituents in a sentence are critical to
its comprehension. Word order gives cues to the roles played by the
different noun phrases, as does the form of the verb. For instance,
in the sentence "The boy ate the banana", we know from word order
that the boy is the agent of the action of eating and the banana is the
patient (thing eaten). If the form of the verb changes, as in "the boy
was eaten by the lion", now word order gives us opposite
information: the boy is the patient, the lion the agent. Prepositions
like "by" also give clues to the role played, as do the semantic
properties of a noun. For instance, only nouns with the property
"animal" can (in non-idiomatic uses) be the agent of the verb "to
eat".

Cottrell and Small's system's case level contains nodes
representing cases; the authors use what they call an "exploded case
representation" in which there are hundreds of semantic case roles
rather than the dozen or so that are commonly mentioned (agent,
instrument, etc.). The syntax level acts to enable or disable
connections between various case rules; for instance, a particular
word might take on a particular one of its senses, and a particular

Neural Networks in Artificial Intelligence 211

case role, if it is in a particular syntactic position (e.g., subject
noun).

Cottrell and Small use the complex "and-of-or" units
introduced by Feldman and Ballard (1982) (see section 2.2). Such a
unit has multiple input sites, each of which has one or more inputs.
Each site computes an "or" of all the inputs impinging on that site,
or, in the case in which the inputs are real-valued, the maximum of
the inputs (which is an extension of the "or" function to the real
valued case). The results computed at all the sites are then added
together.

Cottrell and Small define cases as binary relations between
predicates and arguments, for instance: Agent(run)=John, in the
sentence "John ran home". They explode the case representations by
encoding a single node for each predicate-role combination; thus
there is a "buy-agent" node which denotes agents of the act of
buying. The buy-agent node would be connected to all the nodes at
the word sense level that are capable of being the agent of an act of
buying. This specificity allows the system to embody a good deal of
knowledge about which words can play which roles in a given action.

Figure 7.7. Subset of the network needed to distinguish "John threw up dinner"
from "John threw up a ball." From Cottell and Small (1983); reprinted by
permission.

Cottrell and Small give an example of a network that
successfully disambiguates the various meanings of "threw", as in
"Bob threw a ball for charity" (GAVE), "Bob threw the fight"

212 Language Understanding

(THREW1), "Bob threw a ball to the dog" (PROPEL), and "Bob
threw up dinner" (VOMIT). The four meanings are represented by
4 nodes denoted by GAVE, THREW1, PROPEL, and VOMIT.
There are three case nodes denoting the agent, object, and location of
the PROPEL action—PAGT, POBJ, and PLOC; and two nodes
denoting the agent and object of the VOMITing—VAGT and VOBJ
(why Cottrell and Small chose this particular unappetizing verb to
disambiguate is beyond me!)

The subset of the entire network needed to distinguish "John
threw up dinner" from "John threw up a ball" is shown in Figure
7.7. In the case of the former sentence (referring to the figure), we
see that "dinner" has primed "food", which in its turn has primed
"VOBJ", which primes "vomit". "Bob" primes "Bobl" (its sense
node), which in its turn primes both "PAGT" and "VAGT". Thus
the word "Bob" alone does not help in the disambiguation.
Originally, when the system starts processing, the meanings
PROBEL and VOMIT both get activated, but the inhibition between
them insures that one of them will win out. In the case of the former
sentence, it is "vomit", since it is receiving more activation (from the
"up", "threw", "VAGT" and "VOBJ") than is propel (which is
getting activation from "PAGT", "threw", and "PLOC"). The
critical word "dinner" makes the difference, via "VOBJ". If it is
replaced by "ball", then VOBJ becomes deactivated and POBJ
becomes activated, and thus the "propel" meaning of "threw" wins
out.

The connections between nodes can reflect the statistical
frequencies of correlation between them. This way, if a word is
heard, the system will assume the most common meaning of it.

Without large amounts of lateral inhibition, activation will
"bleed" through Cottrell and Small's network. A theory is heeded
which tells where inhibiting links must be placed in order to lead to
stable coalitions of nodes that represent a consistent sentence
interpretation.

7.5. Making Case Role Assignments
McClelland and Kawamoto (1986b), like Cottrell and Small,

developed a connectionist system for making case role assignments.
Case role assignments are also sometimes ambiguous, as in "the boy
saw the girl with the binoculars". Here, depending on the context,
either the boy or the girl have the binoculars. McClelland and

Neural Networks in Artificial Intelligence 213

Kawamoto's goal was to develop a model which simultaneously
accounts for the multiple constraints on role assignment. This model
was to select the proper verb case frame, to account for the effects of
context, to select default values for missing constituents, and to
generalize, guessing properties of a previously unseen word based on
the role it is playing in a sentence.

The model has two sets of units—one representing the
constituent structure of the sentence and the other representing the
role assignments of the sentence. The model learns by being
presented with associations between activation patterns in the two sets
of units, using the perceptron convergence procedure.

Each word is represented by a set of semantic microfeatures.
They chose those microfeatures based on important divisions in
human perception, such as "soft/hard", "male/female/neuter". Verbs
have microfeatures such as "touch/no touch" which tells whether the
agent touches the patient during the course of the action, or "cause,
no-cause, no-change" corresponding, respectively, to conditions in
which the verb causes something to happen, or in which there is no
cause specified, or in which the verb doesn't cause any change at all.
There are eight dimensions describing nouns and seven describing
verbs. Each microfeature is specified by the minimum number of
bits needed to specify all of its values. Each noun and verb is
therefore represented by a bit vector which is a concatenation of the
bit values on each microfeature. If a word is ambiguous, then it is
represented by the average of its possible patterns.

The "bits" are real-valued; a word that had a 1 on one bit in
one meaning and a 0 on it in the other meaning would have a value
of 0.5 on that bit. The model uses top-down constraints to resolve
such ambiguities, forcing the bit value to either 0 or 1.

Both verbs and nouns have more than one meaning. The
model separates the different uses of a verb into different bit vectors;
for instance, the use of "broke" when no instrument is specified
indicates that the agent manually broke the patient whereas a use such
as "the hammer broke the glass" specifies no agent, and there is
contact between the instrument and the patient. The microfeature
pattern for "touch" has a different bit for each role that could touch
the patient. This representation is subject to criticism from the point
of view of Fodor and Pylyshyn (see section 1.9), who argue that
connectionist models that do not have the ability to manipulate
combinatorically combined symbolic expressions face the necessity
of using a different node to represent each combination, as

214 Language Understanding

McClelland and Kawamoto do, using separate nodes for each pair
agent/touch, instrument/touch, both-instrument-and-agent/touch, etc.
Of course, in their system the number of roles is rather low, so the
number of combinations is low.

The simple sentence input they use is preprocessed with the use
of a standard, non-connectionist parser into its four constituents; the
verb, subject, noun phrase (NP), object NP. These constituents are
each represented redundantly by an array of units called sentence
structure (SS) units. There is an SS unit for every pair of
microfeature bits; for instance for the nouns there is a unit
corresponding to human=yes/ gender=male. If both of these bits are
on, the conjoined unit is on (value 1) with a probability of 0.85; if
only one is on, the conjoined unit is on with a probability of 0.5, and
if both are off, the conjoined unit is on with a probability of 0.15.
The units are thus stochastic.

Cottrell and Small view case slot fillers as relations of the
form (A R B), e.g., (Broke Agent Boy) denotes the fact that the
agent of the verb "broke" is "boy". A localist representation would
require that each combination of three features would have its own
node. McClelland and Kawamoto use a distributed representation
composed of the case structure units. There is an array of units
corresponding to each of the agent, patient, instrument, and modifier
in their simplified case structure. Each unit in each array represents
the conjunction of a microfeature from the representation of the
verb, that is the first operand in the relation, with a microfeature
from the noun, that is the second operand. The main difference
between the sentence structure and case structure units is: in the
sentence structure units an entity's microfeatures are conjoined in a
cross product with each other, whereas in the case structure units the
microfeatures of one operand are conjoined with those of the other.

Each of the sentence structure units is connected to each of the
case structure units via weighted connections. Each unit has a
variable bias. The system, since it has no hidden units, was trained
using the perceptron convergence procedure. The patterns in the
two sets of units were set during the training by a conventional
computer program. There are about 2500 units total in the case role
representation, and approximately 100 of these should be activated
by any given sentence. Their model, after 50 training cycles, turns
on about 85 of these accurately, and 15 of them incorrectly.

McClelland and Kawamoto interpreted the model’s ability to
generalize case role properties of different verbs. For instance, if

Neural Networks in Artificial Intelligence 215

the model leams that the role "patient" of the verb "to break" is
always filled by a "fragile object", it should be biased toward
assuming this when a novel sentence is presented. It should be able
to use this to arrive at the correct interpretation of "the dog broke
the plate" and "the window broke". In the former case, "dog" should
be assigned to the role "agent", whereas in the latter case, "window"
should be assigned the role "patient". This is exactly the behavior
the model exhibits, after being trained on a number of examples in
which a fragile object is the object of "broke". This behavior is due
to the complete connectivity between the case structure and the
sentence structure units, which allows the model to pick up the
microfeatures of a particular slot filler no matter where it may be
found in the sentence.

Conversely, the model is able to use word order information
to make the correct role assignments for "the girl hit the boy" and
"the boy hit the girl", although boy and girl, in their model, differ
only on a single microfeature. This is because the model is able to
form strong correlations between patterns in particular role
constituents and patterns in particular sentence constituents.

The model exhibits the automatic generation of defaults. A
default represents a weighted average of all the arguments that have
been presented in training in the place taken by the missing
argument. The model also is able to use case frame information and
context to resolve lexical ambiguity, as in "the chicken ate the
carrot", where chicken is correctly assigned the role of eater despite
the fact that it normally plays the role of the thing eaten. This is
because the carrot can play the role of the thing eaten, and the word
order makes the chicken preferentially play the role of eater.

The model is also able to make "errors" that reflect context.
In the case when a soft ball breaks something the model incorrectly
labels the ball as hard, because normally hard objects are needed to
break other objects.

7.6. The MPNP Parsing System
Li and Chun (1987) developed a connectionist system for

parsing natural language. Their work is unorthodox from a
connectionist point of view, since it uses both a connectionist
network, and the passing of explicit symbolic markers. In their
system, the nodes can themselves contain symbolic tokens. They

216 Language Understanding

refer to parsing their system as the MPNP (Massively Parallel
Network-based Parsing) system.

They have three modules in their system, the dictionary
interface, the MPNP network, and the inference network. The
dictionary interface processes the input sentence, creating a sequence
of markers indicating the syntactic category of each word. The
MPNP network represents an entire context-free grammar. The
bottom of the network has one node for each terminal symbol in the
grammar. Grammatical rules are represented by connections to
nodes lower down in the network.

For each non-terminal symbol, there are as many nodes in the
MPNP network as there are instances of that symbol on the left-hand
side (LHS) of a rewrite rule. The LHS symbol is connected to all the
symbols, below it in the network, that are on the right-hand side
(RHS) of the rule. Figure 7.8 shows a sample grammar and the
MPNP network that is constructed from it. Note that recursive rules
imply self-links in the network. The links are labeled A, B, C, ...
according to their order on the RHS of the role, giving the ordering
for use by a homunculus internal to the LHS node.

Each of the nodes in
their system has its own local
memory. In order for a node
to become active, it must
receive all of its inputs in the
order given by the labels on
the links. Only after this can
a marker pass across the link.
The markers represent
phrases; each of them
contains the start position of
the phrase in the input
sentence, a value one greater Figure 7.8 A grammar and a network
than the end position, and a representing it. From Li and Chun (1987);
pointer to a data structure reprinted by permission,
representing the syntactic or
semantic structure of the phrase.

Each node in the network runs an independent version of a
program called the housekeeper. The housekeeper makes sure that
the markers that are passed into the node arrive in the proper order,
and rejects any that arrive out of order. It also makes sure that the
starting position is correct. When all the required markers of a given

(1) S ->S l
(2) S I - > NP VP pari
(3) S i - > VP a d
(4) VP - > Vnt [mdr]
(5) VP - > V ti (idv) NP
(0) VP — > Vdo NP NP
(7) V P - > V P P P

(8) PP —> pr* NP
(0) N P —> det N P i
(10) NP - > NPi
(11) NP —> NP PP
(13) N P i —> d o.
(IS) NPI - > «4j NPI

Neural Networks in Artificial Intelligence 217

node are received in the proper order, a new marker is constructed
out of them that has as its starting position that starting position of
the first marker comprising the phrase, and as its ending position the
ending position of the last. This new marker is then passed upward
to all the nodes that the node in question is connected to (in that
direction.) This results, ultimately, in a left-to-right parse of the
input sentence, but it avoids the duplication of resources required by
a more strictly connectionist implementation such as that of Fanty
(see the next section), while retaining the same amount of
parallelism.

Like Fanty's system, Li and Chun's system implements top-
down expectations by using two levels of activation. They propagate
this top-down expectation from the start symbol S, which is at the
top of the network. As this expectation is propagated downwards,
nodes below the S symbol are placed into a semi-activated state.
Only semi-activated nodes can receive input from below; when they
have received one of their required marker inputs, they can move
into a fully activated state. If nodes do not receive any bottom-up
input, they are deactivated. The system therefore starts with very
broad expectation, which is gradually narrowed down over the
course of parsing.

The system also contains, within each node, procedures which
Li and Chun call demons. The function of these demons is to
construct a parse tree out of the smaller trees passed up in the
grammatical network with the markers that come from the phrase
constituents below. Each marker, you may recall, contains a pointer
to such a parse tree; the demon need only combine these trees left to
right. It may also perform associated tasks, such as filling in
semantic roles in a case frame, or perform semantic inferences by
accessing a knowledge base.

The system is able to deal with recursive syntax rules naturally
enough, via self-links. Nodes pass markers to themselves which then
get included in larger markers.

Li and Chun used their system to parse both English and
Chinese sentences. The system extends nicely to handle a problem
found in understanding Chinese, that one or more characters may
correspond to a word. A character occurring alone may denote one
thing, whereas in combination with another character it may mean
something different. It is difficult to ascertain which one is intended
without the aid of syntactic or semantic information. In Li and
Chun’s system, these character combination rules are naturally added

218 Language Understanding

at the lowest level of the MPNP system, and thus syntactic and word
combination information are integrated naturally.

The main advantage of the MPNP system over conventional
serial mechanisms of parsing that utilize backtracking are its
parallelism and its mechanism of passing phrase markers to all the
nodes that might need them. A promising line of research might be
to figure out a way to implement the marker passing used in MPNP
in a more strictly connectionist manner.

7.7. Parsing Strings from Context-Free Grammars
Fanty (1985) developed a connectionist model that parses

sentences that are formed from arbitrary context-free grammars
(CFGs). Given a CFG that contains no e-productions (rewrite rules
that replace symbols with nothing), Fanty constructed a connectionist
network that parses strings of some maximum length, and creates a
parse tree that is implicit in the activations of nodes in the network.
His model is purely syntactic. In contrast to the work of Selman and
Hirst and others, who typically have the network relax to only one
valid parse, Fanty's system computes all the possible parses of an
input sentence in parallel.

Fanty based his network on the CYK parsing scheme
(Hopcroft & Ullman 1979). Like many other schemes, Fanty's
involves a hierarchy of units. On the bottom level is a set of units
representing the input string, which Fanty refers to as the terminal
units. There is one unit on this level for each symbol position in the
input string, and then, within each symbol position, for each terminal
symbol in the grammar. So, for each symbol position that is active in
the input string, exactly one input unit is active.

The other two types of units in his network are the non
terminal units and the match units. Each of the three kinds of units
has two sites, one for top-down and the other for bottom-up input.
There is a non-terminal units for each combination of a non-terminal
unit and a possible length (length of the substring that the non
terminal stands for, that is, the length of the substring is found in the
leaves of the parse tree below that non-terminal), starting at every
possible position of this substring. Thus the representation is highly
local, requiring a large number of units.

Neural Networks in Artificial Intelligence 219

Figure 7.9. A sub-network of match units representing a grammar rule. One of the
match units happens to be primed by input. From Fanty (198); reprinted by
permission.

The match units are used to represent the production rules.
Each production rule in the grammar has a number of match units
associated with it. There is a match unit for each set of non-terminal
units that can logically come together in a position and length-
specific instantiation of a rule. So for instance, if there is, as on the
left side of Figure 7.9, a unit for the non-terminal A starting at
string position 1 and of length 2 (thus occupying positions 1 and 2 of
the string) and there is a unit for the non-terminal B starting at
position 3, also of length 2 (thus occupying positions 3 and 4), since
these two non-terminals are adjacent (in terms of what they
represent), the rule S->AB applies to them. Thus there is a match
unit which receives input from these A and B units, as well as from
an S unit which represents strings of length 4 starting at position 1.
The former connections are bottom up, and the latter ones are top-
down. All the links are weighted.

There are also match units for rules containing terminal
symbols; the only difference is that each terminal symbol represents
a substring of length one, while non-terminals usually represent
longer substrings.

A parse takes place in two phases, a bottom-up phase and a
top-down phase. Units in the terminal layer are initially activated by
being "primed", which, in Fanty's implementation, gives them an

220 Language Understanding

activation value of 5, out of a possible 10. The weights are set so
that, as this priming activation flows upwards, match units will
become primed if all the units below them are primed. Non
terminal units are primed if any of the match units that give input to
them are primed, since the priming of any one of these match units
represents an instance of that non-terminal.

A parse is effected when a unit representing the start symbol is
primed. There is such a unit for every possible length of the
sentence; in the case of a sentence of length n, there is a special
symbol in symbol position n +1 that provides input to the start
symbol for a sentence of length n, causing it to turn "on". "On" and
"primed" are the two states of a unit in Fanty's system. This start
unit now provides top-down input to those units below it in the
network. Every bottom-up connection has a corresponding top-
down connection. Non-terminal units turn on if they are primed and
the unit giving them the maximal top-down input is on. Terminal
units turn on if they receive top-down input from a unit that is
primed. Thus all the valid parse trees of the given input sentence
come to be embodied in the network, each comprised of units that
are on.

The network, as it has been described above, requires
somewhat complex units, since they have three discrete levels of
activation: off, primed, and on. Fanty shows that each of these
three-state units can be easily replaced with two binary-state units,
one for the bottom-up pass of activation, and one for the top-down
pass.

Fanty modified the network so that it automatically
disambiguated syntactically ambiguous sentences. He did this by
making a winner-take-all network out of each set of match units
corresponding to a given non-terminal unit, so that each sentence
constituent can only participate in a parse in a single way, and thus
only a single parse can be represented in the network. It was
necessary to introduce some randomness into the network so that one
of the match units would win out over the others, since the way the
network was initially programmed, all valid match units would
receive an equal amount of activation.

In order to learn new productions, or more specifically,
instances of productions at particular locations in the sentence, Fanty
created a new class of match units, which he called free match units.
The network goes into "learn" mode when an attempt is made to turn
on a nonterminal that is not primed. This indicates that a production

Neural Networks in Artificial Intelligence 221

instance exists that has not been detected and therefore should be
learned. Each free match unit can respond to at most two local units
below it, each representing a specific constituent at a specific position
and a specific length. If a free match unit responds strongly after the
system enters learn mode, it is recruited as a fixed match unit for the
non-terminal that was missing a match, and the system leaves learn
mode. (Learn mode is entered when a special unit called the learn
unit is activated.)

Fanty also devised a quite elaborate mechanism to generalize
these locally learned production instances throughout all the positions
of the network. The basic idea behind this, taken from McClelland's
(1985) Connection Information Distributor (CID), is that there is a
global representation of each production, which is distributed
throughout the network in the form of instances. I will not go into
the details of this here.

There is room for substantially more work on natural
language parsing to follow up this work. Fanty suggests learning
and parsing more complex grammars, such as augmented phrase
structure grammars, as a possible avenue of attack

7.8. PARSNIP: A Parsing System
Based on Back-propagation
Hanson and Kegl (1987) developed PARSNIP (a "snippet" of a

parser), a connectionist model that learns to categorize the words in
sentences into syntactic categories. They use the auto-associative
version of back-propagation, in which the input and the teaching
output are the same. They chose, as a training set of sentences, the
Brown Corpus of text (Francis & Kucera 1979), which has about a
million words. Each word in this corpus has an associated syntactic
tag (noun, verb, etc.), which was chosen by human judges with a
knowledge of linguistics.

They used a feed-forward network with 270 input units, 270
output units, and 45 hidden units, for a total of 585 units in the
system. Thus their system, like Cottrell and co-workers' image
compression system (see section 2.31), must record in the hidden
units a representation of the input that is more compact than the
surface structure of the input sentence.

Only the syntactic categories of each word were input to the
system, not the words themselves. A 9-bit string carried the
syntactic information about each word; this string was formed by

222 Language Understanding

combining information about part of speech, inflection, punctuation,
and whether a word is a function word, to result in 467 unique
syntactic codes. They limited the length of the sentences shown to
the network to 15 or less, padding out the input with zeros if
necessary in order to use all 270 units. There were 25,000 such
sentences in the Brown corpus. They also included codes for word
boundaries in the input.

When they presented 10 sentences repeatedly in training, it
took about 100 cycles through the data—that is, about 1,000 sentence
presentations in total—until 95% of the codes for syntactic categories
passed from input to output, unaltered. After the network was
trained to this degree, they increased the number of training
sentences to 100. Performance quickly plummeted to about 50%
correct; it took about another 160 epoches of training on the new
data—16,000 presentations—before the performance returned to
95%. Finally, another 900 sentences were added to the training set,
for a total of 1,000 sentences. Even after 180 epoches of 1,000
presentations each, the network achieved no better than 85% correct
performance, and performance fluctuated chaotically in the short
term. Thus the network apparently reached its capacity.

They observed that word boundaries tend to be learned first,
then mass nouns and personal pronouns, and then other forms.
Generalization was tested by showing each of the three networks
1,000 novel sentences. The network trained on 10 sentences gave
about 50% correct performance, the network trained on 100
sentences gave about 60% correct performance, and the network
trained on 1,000 sentences gave about 85% correct performance (the
same as on the training set).

PARSNIP is able to complete sentences with missing words,
indicating in its output the syntactic category of the missing word. It
is also not fooled by classic "garden path" sentences, such as "the
horse raced past the bam fell". This is demonstrated by the fact that
if the incorrect part of speech is inserted in the input sentence—for
example, if "past" is characterized as an adverb, the system replaces
it, in its output, with the correct category—in this case a preposition.

The system is also able to correctly auto-associate center
embedded sentences, such as "The rat the cat chased died", but is
unable to handle doubly embedded sentences. This behavior is
similar that of people.

Hanson and Kegl do not feel that PARSNIP provides an
adequate model of language acquisition, yet it has shown that it has

Neural Networks in Artificial Intelligence 223

acquired some of the important aspects of linguistic structure by its
performance on the garden path and missing word tasks. They note
that the system exhibits behavior that cannot be explained by simple
finite-state grammars or matrices of transition probabilities. For
instance, they point out that when faced with the sentence completion
task "the destruction of the city___ ", PARSNIP indicated that the
blank should be filled by a conjunction, even though a conjunction is
not the most likely word to follow a noun. Like a standard context-
free parser, PARSNIP is able to remember "long-distance"
relationships.

An analysis of PARSNIP'S hidden units needs to be done in
order to determine precisely what constituents the system
understands. Hanson and Kegl do have evidence that clusters of
hidden units respond either to noun phrases or verb phrases.
7.9. A Quasi-Context-Free Parsing System

Chamiak and Santos (1987) devised a connectionist system for
parsing sentences drawn from a context-free grammar. They point
out that connectionist parsers, insofar as they do not contain
unlimited numbers of units, cannot be truly context-free, since they
cannot represent sentences with arbitrary amounts of recursive
embedding. Yet, since a connectionist parser can be devised which
has, as its limit, a context-free parser, as the number of units goes to
infinity, Chamiak and Santos argue that we ought to consider it
context-free

They represent the 0
parse tree of a sentence by a
two-dimensional array of
units, each of which holds a
terminal or non-terminal N P V P
symbol of the grammar. The i
bottom row of units contains | / \
the terminal symbols in a n o u n v e rb N P
sentence.

Above each terminal /
symbol, in each column, is n o u n
the complete path to the start
symbol. Thus the parse tree 710. Parse tree used by Chamiak and Santos
in Figure 7.10 is represented (i987). Reprinted by permission,
by the table in Figure 7.11.

224 Language Understanding

Links are made in the table between tokens in adjacent columns that
represent the same constituent.

The parser works by taking in new word categories in the
lower right comer of the table and shifting them to the left as it
parses. Each time a new word category is moved into the table, all
the cells in the table recompute their values, using rules that will be
described shortly, and then the entire table is shifted one column to
the left, to prepare for the input of the next word category.

The system has a number of
rules that it attempts to enforce at
every location in its parsing table.
Each location has a number of non
terminal symbols associated with it,
each with a probability of being
present. Rules are used to raise and
lower the probabilities of location- Figure 7.11. Table representing parse
non-terminal combinations. The tree from. Charniak and Santos
first such rule enforces the equality (1987)’ reprinted by permission.
of non-terminals that are linked together, left to right. Another rule
states that if the non-terminal in table position (i,j) is connected by a
link to a non-terminal in position (i- l,k), then a non-terminal in
position (i,j+ l) should be connected to a non-terminal in position
(i,k + l). This makes sure that none of the connections in the table
cross; any chain of connections, as in Figure 7.12, is strictly above
or below any other chain. This is a property of a parse tree as it is
represented in this kind of table.

Grammatical rules are
embodied in more such
constraints. Chamiak and
Santos give as an example the
grammatical rule S<—NP VP,
which implies that an NP at
location (i j) leads to an S at
(i, j+1), leading to a vertical
representation of the parse
tree. This is the case for
every constituent of a rule such as A <-... B ...: A is placed in the
slot above B in the table. Moreover, as rules start and end,
constraints make sure that no units to the left and right of the start
and end respectively of a rule are connected to the start or end

f S - S

s - S i ,VP - VP

NP VP) NP - NP

noun verb del noun

Figure 7.13. Chamiak and Santos' (1987)
representation of a parse. Reprinted by
permission.

S
NP vp

NP
noun verb det noun

Neural Networks in Artificial Intelligence 225

symbols. (This is necessary because every slot in the table, whether
it is empty or not, contains a pointer value.) Another constraint says
that if a rule such as S<-NP VP has its VP inserted in the table,
which is finishing (that is, it has "gobbled up" its the constituents
which it represents), then it should encourage the S above it to finish,
and vice versa. "Finishing," in this use, denotes terminating the
chain of left-to-right connections between symbols representing the
same constituent.

Because of the limitations of the size of the table, the system is
limited in the lengths of sentences that it can parse. The table can be
made arbitrarily big, at the expense of resources, to parse larger and
larger sentences. The system handles right-embedded sentences fine,
but it cannot handle center-embedded sentences, because new
constituents moving into the table that are center-embedded have
nothing in the parse tree to be connected to. This is somewhat
consistent with psychological results that indicate that parsing center-
embedded sentences is more difficult for people; nevertheless, the
parser needs to be improved so that it can handle them, because
people can.

7.10.Parsing Using a Boltzmann Machine
Selman and Hirst

(1987) use a Boltzmann
machine and simulated
annealing to accomplish
parsing in a context-free
network. They do this using
a network with two layers.
The input layer contains units
that represent the terminal FiSure 713- Selman and Hirst's <1987)
symbol of a context-free repiesenation of grammatical rules. Reprinted
grammar. The parsing layer by permission.
consists of small groups of units that represent context-free rules. A
rewrite rule such as S<— NP VP is represented by three nodes, one
for each symbol, connected together in a clique. Selman and Hirst
refer to such a rule clique as a connectionist p r im i t iv e .
Connectionist primitives are linked together by special units referred
to as binder units. For instance, if there are three rewrite rules for
VP, these are linked to one another via binder nodes, which inhibit

226 Language Understanding

one another (see Figure 7.13). All nodes other than binder nodes are
referred to as main nodes.

The input layer is divided into groups, one for each word in
the input. Each group has a unit for each of the lexical categories—
that is, the terminal symbols supported by the grammar. There are
enough input groups to deal with every word in the longest sentence
that the system supports. Exactly one unit is activated in each group;
the rest are de-activated. Selman and Hirst use the two output values
-1 and +1, as opposed to other work that uses simulated annealing,
which uses 0 and 1. This entails slight modification of the simulated
annealing equations. After simulated annealing, when the system has
reached low temperature, the units outputting +1 represent the parse
tree.

In their simulations, Selman and Hirst only had grammar rules
with one or two symbols on the right-hand side (RHS). In order not
to bias the choice of which rule is incorporated into the parse tree,
they use a weight of +2 in the excitatory connections between units in
one-symbol RHS primitives and connections of +1 in the two-symbol
RHS primitive. The inhibitory weights (between pairs of adjacent
binder units) were set to -3. If a main unit was connected only to
binder nodes, its threshold was set to -2, otherwise it was set to 0.
The binder units had a threshold of +2 (since they compete with one
another, only the one receiving the most input should be activated).

Selman and Hirst were concerned that their stable states might
not lead to states representing parses. As a possible solution to this
problem, they proposed a scheme in which the energy is measured
on the basis of whether all the units in the system have reached stable
states. They built a sample network based on a sample CFG with 11
rules taken from Winograd's textbook (1983). After simulated
annealing, the units that were active embodied the parse tree of the
sample sentence that was used. The temperature sequence used was
T = 10,000, 4, 2, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, and 0.6 Each
temperature involved 2,000 updates per unit. Thus, simulated
annealing, as usual, was a slow process; if realized in hardware it
would be much faster.

Selman and Hirst tested the effects of changing the weights and
thresholds to incorrect values. The setting of one of the thresholds
to an incorrect value led the system to fluctuate between two states,
one of which was the correct parse. The stochastic nature of this
algorithm led to this fluctuation; when the temperature was lowered
to zero the system settled into one state or the other.

Neural Networks in Artificial Intelligence 227

7.11.Learning the Past Tense
Rumelhart and McClelland (1986a) offer a connectionist theory

that attempts to explain how the past tenses of English verbs are
learned, as an alternative to the traditional approach of rule-learning
that is exemplified by the work of Pinker (1984). In this letter
approach, unconscious rules are acquired by a special language
acquisition device (LAD) in the mind, following Chomsky’s theory
(1980). Rumelhart and McClelland argue that processes that appear
to be rule-governed are in fact governed by other processes; they
give the example of a honeycomb, whose characteristic hexagonal
form is a result of the interaction of lower-level actions taken by the
bees. They claim that a connectionist model can substitute for
explicit rules.

They note that children typically go through three stages in the
learning of the past tense. In stage 1, children know a small set of
past forms, such as came, got, gave, looked, needed, took, and went,
of which only two are regular (looked and needed). In stage 2,
children are able to form past tenses using -ed, but they over
generalize to form charming errors like "taked". In stage 3, this
over-generalization is corrected. The movement from stage 1
through stage 2 to stage 3 is continuous and gradual, like many
human learning processes.

Fixed
Encoding
Network

Pattern Associator
Modifiable Connections

Decoding/Binding
Network

Phonological
representation
of root form Wickelfeature

representation
of root form

Wickelfeature
representation
of past tense

Phonological
representation
of past tense

Figure 7.14. Architecture of Rumelhart and McClelland's (1986d) verb learning
model. Reprinted by permission.

228 Language Understanding

Their model consists of units phonologically representing the
root forms and units phonologically representing the past tense
forms. These are connected to each other in a pattern associator
network. Two layers of units lie between these two sets of units, to
form a four-layer network. The root form phonological units (layer
1) are connected to "wickelfeature" units (see below) representing
the root form (layer 2) These latter units are connected to
wickelfeature units representing the past tense form (layer 3), which
are connected to the phonetic units for the past tense, (layer 4) The
idea is that a phonological representation of the root form given as
input will cause a phonological representation of the past tense form
to appear as output (see Figure 7.14).

They use binary threshold units with a logistic probability of
becoming activated; this probability depends on the amount a unit's
input exceeds the threshold. In their first example, they trained a
simple pattern associator, using only a two-layer perceptron and the
perceptron convergence procedure to recognize associations. They
then extended their model so as to account for the representations of
words, using the four-layer associator mentioned above.

Each sound is represented phonetically by its sound and the
sounds of the two sounds surrounding it. These are called
wickelphones, since this scheme was first suggested by Wickelgren
(1969). For instance, tthe wickelphone representation of the word
"cat" is #ka, kat at#. (# denotes a word boundary.) The trouble is
that there are too many wickelphones, about 42,000. Therefore,
Rumelhat and McClelland do not explicitly represent wickelphones.

Instead, wickelphones are coarse-coded; each wickelphone is
represented as a pattern across another set of units (layers two and
three in the description above), called the "wickelfeatures". Eleven
bits are used to classify each sound in terms of whether or not it is a
stop, fricative, a nasal stop, etc.; thus 33 bits are needed to represent
the three sounds in a wickelphone. Each wickelfeature unit
corresponds to a triple of features; one drawn from each phoneme
participating in the wickelphone, in the nth place out of 11 features.
For instance, a particular wickelfeature might represent all those
phonemes that have a left context that is a nasal, a right context that
is a stop, and whose central phoneme is voiced. They did not use all
possible wickelfeatures, just about half, which "covered" the
wickelphone territory sufficiently with their receptive fields. They
also "blurred" the representation of wickelphones by randomly
turning on some wickelfeature units that were similar to the

Neural Networks in Artificial Intelligence 229

wickelfeatures in given wickelphone's receptive field. This
permitted the system to generalize based on limited experience.

Thus in the four layer system described above, only the inner
two layers actually exist in the system: wickelfeature units for
representing the base form of the verb (the input units) and
wickelfeature units for representing the past tense. There were 460
units on each side, and learning proceeded using binary threshold
units, a logistic activation rule, and the perceptron convergence rule.
Their model reflected the three stage performance of children, and
was able to generalize to verbs it had not previously seen.

The model was first trained on 10 high-frequency verbs, then
on 420 medium-frequency verbs. Then its responses to a set of low-
frequency verbs was recorded. Performance on irregular verbs
originally rose at the same rate as regular verbs (stage 1), then fell
off as the regular verb performance continued to improve (stage 2).
Irregular verb performance then started to improve again (stage 3),
but never reached the level of regular verbs. In children, the error
of over-generalizing was more likely to be made earlier in the
learning process.

Their simulation can be criticized on the basis that it does not
accurately simulate the actual data that children receive. It would be
more accurate to simply train the network on all the verbs at the
frequency that they occur naturally, and let the system simply attend
to the more high-frequency ones in its behavior; this is what children
have to do.

They show that the model correctly captures children's
performance on a variety of different irregular verbs, even
capturing many of the detailed features of the performance. For the
verbs on which the system was not trained, 90% of the regular verbs
have the correct performance in forming the past tense and 85% of
the irregular verbs do. Correct performance on the irregular verbs
is based on system sensitivity to "sub-regularities" in English, such as
sing-sung, ring-rung (but bring-brung?). They note that both their
model and children exhibit differing past tense forms for the same
verb. Rule accounts need to be made probabilistic to account for
this.

They point out that because of the superpositional nature of
their distributed memory, their system performs automatic
generalization. Thus, they claim, the system is not performing rule
induction, as in a traditional memory scheme, but neither is it simply
storing associations, or rather the associations it is storing are of a

230 Language Understanding

more general nature than the root form-past tense association at the
phonetic level. Of course, one might argue, the salient features of
the phonology have been built into the wickelfeature representation;
a more complete solution to the problem would learn the relevant
phonological features at the same time as learning the root verb-past
tense association.

7.12.A Critique of "Learning the Past Tense"
Pinker and Prince (1988) develop a critique of Rumelhart and

McClelland's past tense verb model, and a defense of rule-based
models of language acquisition and their use in linguistics in general,
which, as a theoretical technique, had reigned almost unchallenged
ever since the rise of cognitivism in the 1950s—until connectionism
came along. They note that language provides a critical test case for
connectionism since linguistic theory has been notoriously rule-laden
and reasonably successful in explaining linguistic phenomena.

Pinker and Prince point out that when Rumelhart and
McClelland claim that their model does not involve rules, they mean
that no rules are explicitly represented in their model. The
Rumelhart and McClelland model relies heavily on wickelphones and
wickelfeatures to achieve this. Pinker and Prince feel that
wickelphones and wickelfeatures are limited as a representation
medium. For instance, they point out that "slit" and "silt" have no
wickelphones in common in their wickelphone representation; thus a
transformation of slit to silt involves a complete replacement of
wickelphones. This is not the case in terms of wickelfeatures, but
they point out that such a substitution involves just as many changes
in wickelfeatures as one that is phonetically much more distant. Yet
the wickelfeature model takes clear advantage of similarities between
the input and output representations to produce generalization.
Pinker and Prince's complaint is that it does not readily support
generalizations using the form slit-silt, although such
transformations exist in human languages.

They note that the wickelfeature model readily models
linguistically impossible phenomena, such as relating a word to its
phonetic mirror image, for instance, dumb to mud. This is easy to
do in the wickelfeature representation; simply give positive weights
to connections between ABC in the input wickelfeatures and CBA in
the output.

Neural Networks in Artificial Intelligence 231

Pinker and Prince point out that past tense is only one of
several processes in English that use the t-d-id regular inflection, as
in kicked (t), slugged (d), and patted (id). Other processes, such as
the process that makes adjectives from nouns, as in hooked (t),
homed (d), and talented (id) use the same inflections. The reason
they point this out is to make the point that the inflection is not
morphological, but phonological. Phonology is a system that exists
outside of morphology; any morphological change is subject to
phonological modification.

This is even clearer in the case of the (-s, -z, -iz) alteration
(e.g., hawks, dogs, hoses) which is used in no fewer than nine
different morphological contexts in English, including plural,
possessive, contraction of "is", etc. It can be applied in completely
novel circumstances, as in the end of a noun phrase: Pinker and
Prince give the example "the man you met’s dog". Given the
extraordinary productivity of language, this kind of thing can come
up in a basically infinite number of ways; the phonological,
morphological, and syntactic systems must interact in a complex
fashion to attach the possessive in the place. Thus, contrary to what
Rumelhart and McClelland's model implies, forming correct
inflections is not simply a matter of forming associations between
words. Of course, this does not invalidate connectionist models, but
just implies that they must be employed as components of a larger
system.

Among many other criticisms of details of the model, Pinker
and Prince also accuse Rumelhart and McClelland's model of
"morphological localism"—that is, for each morphological category
there exists a separate system for forming the inflection. In this
view, there would have to be one system for each transformation—
past tense, possessive, plural, etc.—instead of a purely phonetic
system serving the needs of several morphological transformations.
This is not a flaw of connectionist models in general, but rather is
specific to Rumelhart and McClelland's model. In fact, connectionist
models exist that allow interaction between various levels of
linguistic analysis, such as Waltz and Pollack's sentence
interpretation model (see section 7.4.) Pinker and Prince’s criticisms
of the Rumelhart and McClelland model can be viewed as a challenge
to connectionists to formulate a more linguistically accurate model,
although this may involve the representation of explicit rules and
reduction of the connectionist model to the status of an
implementation theory for complex systems of rules.

232 Language Understanding

7.13.Letter and Word Recognition
Rueckl (1986) developed a connectionist model to account for

the mental process of letter and word recognition. His model was
motivated by the desire to explain the well-known psychological
effect of word repetition. Subjects in psychological experiments are
better able to recognize words that they have recently seen. This is
also true, Rueckl showed, of pseudo-words, that is, pronounceable
non-words such as "zick". Retrieval models (e.g. Forster 1976,
McClelland & Rumelhart 1985) account for these phenomena by
theorizing that representations for words that are primed (perceived
recently) are moved to a more accessible place from long-term
memory, or, in the case of the pseudo-words, the representation is
constructed during the priming, and it remains more accessible than
other items in the long-term memory.

Rueckl's goal was to develop a model which explained these
effects more simply. To do this, he turned to a connectionism. He
also wanted to come up with a general model of the letter/word
recognition process which explains such things as how words and
letters are learned over time.

His model is partitioned into a series of modules or layers.
The first module produces a retinotopic feature map (RTM)
consisting of simple features such as lines, points, angles and curves.
The RTM module consists of a two-dimensional representation of
sensory input, like that impinging on a human retina. Each unit has
a local receptive field which overlaps with the receptive fields of the
units near it. There are units for each type of feature at each
location. Units have responses that are best for a particular feature
(such as a line at a particular orientation) but they also respond to
similar features, so that a particular feature causes a pattern of
activation in the RTM module. Thus, Rueckl's model is a distributed
one.

Rueckl's second module is the object-centered feature map
(OFM). The features represented in the RTM module are specified
in the coordinate system of the visual fields. In the OFM module, an
object's features are represented relative to the object's own center.
Features are assumed to have patterns of activity that take up
relatively few nodes in the OFM module, so that a number of
features can be represented at once with little overlap.

Neural Networks in Artificial Intelligence 233

The third level, the object identity representation (01), consists
of patterns of activity corresponding to entire objects, which can be
either letters or words, depending on the stimuli given to the system.

The goal of Rueckl’s system is to learn to form the same
representations in the OFM and 01 levels when the same object
(letter or word) is presented at the RTM level, regardless of where
in the retinal field the object is presented. This learning proceeds by
having the system first learn to recognize simple objects, then
complex conjunctions of these objects.

The first problem that Rueckl faced was the problem of
achieving translation invariance; that is, to take a simple feature and
have the system learn to evoke the same pattern of the OFM level, no
matter where it was presented on the RTM level. One possible
solution is brute-force: first present a single RTM-OFM association,
then clamp the OFM pattern while RTM patterns corresponding to
other positions of the stimulus are presented, and reinforce
associations between each of these RTM patterns and the OFM
pattern.

After simple elements are learned, the next task for the system
is to learn the RTM-OFM relationship of complex conjunctions of
elements. One problem that Rueckl discusses is the possibility that
the representations of different simple elements in the conjunction
will interfere with one another. One would hope that the
representations will be sufficiently sparse so as to make this unlikely,
but there is no guarantee of this.

One might argue that this loss of information is acceptable, as
long as there is a unique representation for each conjunction, but
Rueckl points out that information such as the number of distinct
features in the stimulus may be lost; he gives the example of two
horizontal lines in the stimulus, one above each other, like an "=".
Since, by assumption, both lines would cause the same pattern in the
OFM, the OFM would only reflect the presence of one feature,
rather than two. Clearly the spatial relational information relating
the two features must be retained in some form. Rueckl suggests the
solution due to Hinton (1981b). Hinton adds a population of nodes
representing reference frames at orientations and positions that
sample the space of possible frames in some manner. These nodes
serve to gate connections between RTM and OFM. Thus the two
horizontal bars would excite different patterns in the OFM.

Rueckl also considers to the problem of classes of objects that
are visually distinct. One would like to have the system respond

234 Language Understanding

similarly to "A" and "a", even though their visual patterns are quite
distinct. In order to handle this, he posits that there is another
module, the contextual model (CM), which along with the OFM,
gives input to the OI. In order for "a" and "A" to have a similar
pattern in the OI, it is sufficient for the CM to give the same input to
the OI while both of them are presented. This will allow them to be
classified together for certain purposes, while retaining their own
distinct visual patterns. This type of representation can account for
experiments (McClelland 1976) in which, because of limited stimulus
presentation time, subjects are able to report the identity but not the
case of a letter stimulus.

Rueckl considers the problem of word identification. While
words, like letters, are just conjunctions of features, there is
evidence, as common sense might conclude, that what is visually
salient about words is the particular sequence of letters involved
rather than the global impression that the configuration of features in
the word confers.

The prerequisite for word recognition by Rueckl’s system is
therefore letter recognition; he assumes it has achieved this. Thus
the pattern in the OFM caused by a word will be the superposition of
the OFM patterns for the constituent letters, containing no
information about their order—thus "rat" and "tar" would lead to
the same OFM pattern. If this spatial information is to be retained
then Hinton's gating scheme mentioned above may be used.

Word identification relies on the following property of the
system: hat the input provided to OI by OFM by a particular letter is
sufficiently similar, regardless of case, so as to make words in upper
and lower case recognizable as the same word. It is also dependent
on the gating by reference frames, in order to convey information
about the relative position of letters in the word. Both of these are
properties of the form of coarse coding, since the information about
the relative position of the letters is not represented explicitly, but is
a property of the overall representation.

Having elaborated his model, Rueckl is in a position to account
for the word-repetition effect. It is understood by positing that the
first time a word is presented, the connections between the OFM and
OI units that are active during recognition are strengthened. This
makes subsequent recognitions easier, because the relaxation process
leading to recognition proceeds faster. Thus the word-repetition
effect—both in its actual word and pseudo-word versions—emerges
as a natural feature of the model. The explanation is less complex

Neural Networks in Artificial Intelligence 235

than that given by a retrieval model. The major difference between
the word and the pseudo-word processes is that the pseudo-word
representation constructed is new.

Rueckl considers the problem of how multiple words are
perceived at once. The obvious answer is via multiple channels
which the brain, with its multitudes of neurons, would be able to
provide. The problem with duplicate channels is that word learning,
as described above, is a local process occurring in a single channel.
Thus, if you want to process words in multiple channels, they system
must complicate the learning process.

One system that uses multiple channels is McClelland's
Connection Information Distributor (1985), in which learning takes
place in a central channel and this information (weights) is
distributed to multiple channels for the purpose of parallel
recognition. The alternative is to process words and letters serially,
attending at different points in time to different elements of the
stimulus.

If words are processed sequentially, then one would expect
that letters would be too. This would lead you to believe that single
letters are recognized faster than whole words, and that short words
are recognized faster than long words. In fact, this is not the case, as
Rueckl points out: words are recognized faster than single letters,
and long words are identified just as fast as short ones are.

Postscript

In the less than ten years since the active revival of neural
network research, researchers have shown the applicability of
connectionist models to a wide variety of cognitive phenomena.
These models have lent themselves naturally to the solution of
cognitive problems requiring the integration of multiple constraints,
such as object recognition or sentence processing. Several learning
algorithms have been proven effective at embodying systems of
constraints in a network.

There are several challenges ahead for researchers who want
to discover networks that have general-purpose cognitive
capabilities. Most researchers agree that this goal is dependent on the
embodiment of large amounts of knowledge in a system, and it is
best that this knowledge be learned, rather than explicitly wired in.
This will require systems with numbers of units that are several
orders of magnitude larger than the current system (a typical current
system might have 102-105 units; the brain has about 1011). Learning
times, using current algorithms, even with relatively fast computers,
for such larger networks, may be prohibitive. The development of
special-purpose hardware that implements such algorithms as error
back-propagation will ease this problem. Researchers will have to
think carefully when designing the topology of their networks, in
order not to waste connections. One principle they can use is to give
each neuron a receptive field consisting only of nearby neurons; this
principle is used by the brain.

Another major challenge to connectionists is to meet the
objects given by Fodor and Pylyshyn that neural network models
lack the representational power of logic or list-based symbolic
computation. One aspect of this challenge is to find a connectionist
implementation of the type/token distinction that expresses in a

Neural Networks in Artificial Intelligence 237

satisfying manner the distinction between a class and one of its
members. A related issue is how one might bind variables in a neural
network.

Most neural network models—for instance, almost all of those
reviewed in this book—are concerned with a single domain of
cognition, such as language processing or vision. Part of the reason
for this is cultural, in that most researchers tend to be specialists in
only one of these areas, and it is difficult to become expert in more
than one. Nevertheless, most artificial intelligence researchers would
agree that the development of intelligent systems is dependent on
building bridges between two or more of these areas, especially
between vision and natural language. Future connectionist systems
will be highly modular, with sub-networks (modules) devoted to
processing different types of information, and with the various
modules passing information to one another.

It is still unclear which school in AI, connectionism or
symbol-processing, will be the most successful, ultimately. Perhaps
an approach that borrows ideas from both schools will succeed.
There is the danger that much talent (and research money) may be
drawn away from traditional AI in favor of connectionism, and
traditional AI (which I do not think has played itself out) may be
neglected. If this occurs, it may be unfortunate, because
connectionism (given the current level of knowledge of the brain)
may be a blind alley. Yet, if it does not produce results, the
pendulum may swing back toward traditional AI. It is, however,
very likely that connectionism will produce commercial results in
both speech recognition and letter recognition, perhaps even of
handwriting, within 10 years, if current trends in computing costs
continue.

The ready availability of connectionist simulators (such as
those available from the University of Rochester, the University of
California at Los Angeles, and the George Mason University
computer science departments) and inexpensive workstation-based
computing has led to an explosion of neural network research. To
follow the exciting course of events, one might consider joining the
International Neural Network Society (INNS), attending its
conferences or those of the AI societies, or reading some of the
journals cited in the bibliography. Or one can simply get one of the
simulators and start building models; many fruitful learning rules,

238 Postscript

cognitive domains, and network topologies are, no doubt, still to be
explored.

Bibliography

Ackley, D. H. (1987). Stochastic Iterated Genetic Hill-climbing .
Ph.D. Thesis, Camegie-Mellon, Pittsburgh, PA.

Ackley, D. H., Hinton, G. E. & Sejnowksi, T. J. (1985). A Learning
Algorithm for Boltzmann Machines. Cognitive Science. 2, 147-169.

Alspector, J. & Allen, R. B. (1987). A Neuromorphic VLSI
Learning System. In P. Loseleben (Ed.), Advanced Research in
VLSI: Proceedings of the 1987 Stanford Conference Cambridge,
Mass.: MIT Press.

Amari, S. (1967). A Theory of Adaptive Pattern Classification.
IEEE Transactions on Electronic Computers. EC-16. 299-307.

Amari, S. (1983). Field Theory of Self-Organizing Neural Nets.
IEEE Transactions on Systems. Man. and Cybernetics. SMC-13. 741-
748.

Anderson, C. (1986a). Learning and Problem Solving with
Multilayer Connectionist Systems . Ph.D. Thesis, University of
Massachusetts.

Anderson, D. Z. (1986b). Coherent Optical Eigenstate Memory.
Optics Letters. 11. 56-58.

Anderson, J. A. (1983). Cognitive and Psychological Computation
with Neural Models. THEE Transactions on Systems. Man. and
Cybernetics. 13(September/October), 799-815.

240 Bibliography

Anzai, Y. & Simon, H. A. (1979). The Theory of Learning by
Doing. Psychological Review. 86.

Ash, T. (1989). Dynamic Node Creation in Connectionist Networks
(technical report 8901). Cognitive Science Institute, University of
California, San Diego.

Axelrod, R. (1987). The Evolution of Strategies in the Iterated
Prisoner's Dilemma. In L. Davis (Ed.), Genetic Algorithms and
Simulated Annealing Pitman: London.

Bahl, L. R., Jelinek, F. & Mercer, R. L. (1983). A Maximum
Likelihood Approach to Continuous Speech Recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence. PAMI-5.
179-190.

Ballard, D. H. (1988). Modular Learning in Neural Networks
(technical report preprint). Department of Computer Science,
University of Rochester.

Barlow, H. B. (1972). Single Units and Sensation: a Neuron Doctrine
for Perceptual Psychology? Perception. 1, 371-394.

Barto, A. G. & Anandan, P. (1985). Pattern Recognizing Stochastic
Learning Automata. IEEE Transactions on Systems. Man. and
Cybernetics. 15. 360-375.

Barwise, J. & Perry, J. (1983). Situations and Attitudes . Cambridge
MA: MIT Press.

Bienenstock, E. L., Cooper, L. N. & Munro, P. W. (1982). Theory
for the Development of Neuron Selectivity; Orientation Specificity
and Binocular Interaction in Visual Cortex. Journal of Neuroscience.
2, 32-48.

Bookman, L. A. (1988). A Connectionist Scheme for Modelling
Context. In G. E. Hinton, T. J. Sejnowski & D. S. Touretzky (Ed.),
Proceedings of the 1988 Connectionist Models Summer School San
Mateo, CA: Morgan Kaufmann.

Brady, R. M. (1985). Optimization Strategies Gleaned from
Biological Evolution. Nature. 317. 804-806.

Neural Networks in Artificial Intelligence 241

Burt, P. J. (1984). The Pyramid as a Structure for Efficient
Computation. In A. Rosenfeld (Ed.), Multiresolution Image
Processing and Analysis Berlin: Springer-Verlag.

Carpenter, G. A. & Grossberg, S. (1987). A Massively Parallel
Architecture for a Self-organizing Neural Pattern Recognition
Machine. Computer Vision. Graphics, and Image Processing. 37. 54-
115.

Chamiak, E. & Santos, E. (1987). A Connectionist Context-Free
Parser Which is not Context-Free, But Then It is not Really
Connectionist Either. Proceedings of the Ninth Annual Conference
of the Cognitive Science Society (pp. 70-77). Seattle, WA: Erlbaum.

Chomsky, N. (1959). Review of Skinner's Verbal Behavior.
Language. 35. 26-58.

Chomsky, N. (1980). Rules and Representations . New York:
Columbia University Press.

Clowes, M. B. (1971). On Seeing Things. Artificial Intelligence. 2,
79-116.

Cohen, M. S. (1986). Design of A New Medium for Volume
Holographic Information Processing. Applied Optics. 14. 2288-94.

Cohen, P. R. & Feigenbaum, E. A. (1982). The Handbook of
Artificial Intelligence . Los Altos, CA: William Kaufmann, Inc.

Cooper, L. N., Liberman, F. & Oja, E. (1979). A Theory for the
Acquistion and Loss of Neuron Specificity in Visual Cortex.
Biological Cybernetics. 33. 9-28.

Cottrell, G. W. & Small, S. L. (1983). A Connectionist Scheme for
Modelling Word Sense Disambiguation. Cognition and Brain
Theory. 6(1). 89-120.

Cottrell, G.W, Munro, P. & Zipser, D. (1987). Learning Internal
Representations from Gray-Scale Images: An Example of
Extensional Programming. Proceedings of the Ninth Annual
Conference of the Cognitive Science Society. Seattle, WA: Erlbaum.

242 Bibliography

Cowan, J. D. & Sharp, D. H. (1988). Neural Nets and Artificial
Intelligence. In S. R. Graubard (Ed.), The Artificial Intelligence
Debate: false starts, real foundations Cambridge, Mass.: MIT Press.

Derthick, M. A. (1987). Factual and Counterfactual Reasoning by
Constructing Plausible Models. Proceedings of the Conference of the
American Association for Artificial Intelligence (AAAI) Seattle WA:

Dieterich, J. (1988). Knowledge-intensive Recruitment Learning
(technical report TR-88-010). International Computer Science
Institute, Berkeley.

Doddington, G. R. & Shalk, T. B. (1981). Speech Recognition:
Turning Theory into Practice. IEEE Spectrum. (September), 26-32.

Dolan, C. P. & Dyer, M. G. (1987). Symbolic Schemata, Role
Binding, and the Evolution of Structure in Connectionist Memories.
Proceedings of the First International Conference on Neural
Networks (pp. 287-298). San Diego, CA: IEEE.

Duda, R. O. & Hart, P. E. (1973). Pattern Classification and Scene
Analysis . New York: Wiley.

Dyer, C. R. (1982). Pyramid Algorithms and Machines. In K.
Preston & L. Uhr (Ed.), Multicomputers and Image Processing New
York: Academic Press.

Elman, J. L. (1988). Finding Structure in Time (technical report
8801). Center for Research on Language, University of California,
San Diego.

Fanty, M. (1985). Context-Free Parsing in Connectionist Networks
(technical report 174). Computer Science Department, University of
Rochester.

Feldman, J. A. (1986). Neural Representation of Conceptual
Knowledge (technical report TR189). Department of Computer
Science, University of Rochester.

Neural Networks in Artificial Intelligence 243

Feldman, J. A. & Ballard, D. H. (1982). Connectionist Models and
Their Properties. Cognitive Science. f>, 205-264.

Fennel, R. D. & Lesser, V. R. (1977). Parallelism in Al Problem
solving: A Case Study of HEARSAY-II. IEEE Transactions on
Computers. C-26. 98-111.

Fillmore, C. J. (1968). The Case for Case. In E. Bach & R. T.
Harms (Ed.), Universals in Linguistic Theory New York: Holt,
Rinehart, and Winston.

Fletcher, R. (1980). Practical Methods of Optimization . New York:
Wiley.

Fodor, J. A. (1981). Representations: Philosophical Essavs on the
Foundations of Cognitive Science . Cambridge MA: MIT Press.

Fodor, J. A. & Pylyshyn, Z. W. (1988). Connectionism and
Cognitive Architecture: a Critical Analysis. In S. Pinker & J. Mehler
(Ed.), Connections and Symbols Cambridge, Mass.: MIT Press.

Forgy, C. L. (1981). OPS5 User's Manual (technical report CMU-
CS-78-116). Camegie-Mellon University.

Forster, K. I. (1976). Accessing the Mental Lexicon. In E. C. T.
Walker & R. J. Wales (Ed.), New Approaches to Language
Mechanism Amsterdam: North Holland.

Francis, W. N. & Kucera, H. (1979). Manual of Information to
Accompany a Standard Corpus of Present-Dav American English for
Use with Digital Computers Technical report, Brown University.

Fukushima, K. (1975). Cognitron: a self-organizing multilayered
neural network. Biological Cybernetics. 20, 121-136.

Gallant, S. I. (1988). Connectionist Expert Systems. Communications
of the ACM. 21(2), 152-169.

Gardner, H. (1985). The Mind's New Science: a History of the
Cognitive Revolution . New York: Basic Books.

244 Bibliography

Geman, S. & Geman, D. (1984). Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images. IEEE
Transactions on Pattern Analysis and Machine Intelligence. PAMI-
6(721-741),

Graubard, S. R. (1988). The Artificial Intelligence Debate: False
Starts. Real Foundations . Cambridge, Mass.: MIT Press.

Greenough, W. T. & Bailey, C. H. (1988). The Anatomy of a
Memory: Convergence of Results Across a Diversity of Tests.
Trends in Neuroscience. 11. 142-147.

Grossberg, S. (1976). Adaptive Pattern Classification and Universal
Recoding I & II. Biological Cybernetics. 23(121-134, 187-202),

Hanna, P. R., Hanna, J. S., Hodges, R. E. & Rudorf, E. H. (1966).
Phoneme—Grapheme Correspondences as Cutes to Spelling
Improvement (technical report. U.S. Department of Health,
Education, and Welfare.

Hanson, S. & Kegl, J. (1987). PARSNIP: A Connectionist Network
that Learns Natural Language from Exposure to Natural Language
Sentences. Proceedings of the Ninth Annual Conference of the
Cognitive Science Society Hillsdale, NJ: Erlbaum.

Hebb, D. O. (1949). The Organization of Behavior . New York:
Wiley.

Hewett, C. (1977). Viewing Control Structures as Patterns of Passing
Messages. The Artificial Intelligence Journal. 8(232-364),

Hillis, D. (1985). The Connection Machine . Cambridge, MA: MIT
Press.

Hinton, G. E. (1981a). Implementing Semantic Networks in Parallel
Hardware. In G. E. Hinton & J. A. Anderson (Ed.), Parallel Models
of Associative Memory Hillsdale, NJ: Erlbaum.

Hinton, G. E. (1981b). Shape representation in Parallel Systems.
Proceedings of the Seventh International Conference on Artificial
Intelligence Vancouver, BC, Canada: Erlbaum.

Neural Networks in Artificial Intelligence 245

Hinton, G. E. (1986). Learning Distributed Representations of
Concepts. Proceedings of the Ninth Annual Conference of the
Cognitive Science Society : Erlbaum.

Hinton, G. E. (1989). Connectionist Learning Procedures. Artificial
Intelligence, to appear.

Hinton, G. E. & McClelland, J. L. (1987a). Learning Representations
bv Recirculation (technical report in preparation). Camegie-Mellon
University.

Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. (1986a).
Distributed Representations. In D. E. Rumelhart & J. L. McClelland
(Ed.), Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Volume 1: Foundations. Cambridge,
Mass.: MIT Press.

Hinton, G. E. & Plaut, D. C. (1987b). Using Fast Weights to Deblur
Old Memories. Proceedings of the Ninth Annual Conference of the
Cognitive Science Society Seattle, WA: Erlbaum.

Hinton, G. E. & Sejnowski, T. J. (1986b). Learning and Relearning
in Boltzmann Machines. In D. E. Rumelhart & J. L. McClelland
(Ed.), Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Volume 1: Foundations. Cambridge,
Mass.: MIT Press.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems .
Ann Arbor, Mich.: Univ. of Michigan Press.

Honavar, V. (1989). Perceptual Development and Learning: from
Behavioral. Neurophvsiological and Morphological Evidence to
Computational Models (technical report 818). Computer Sciences
Department, University of Wisconsin.

Honavar, V. & Uhr, L. (1987). Recognition Cones: A Neuronal
Architecture for Perception and Learning (technical report 717).
University of Wisconsin-Madison, Computer Sciences Dept.

Honavar, V. & Uhr, L. (1988). A Network of Neuron-like Units that
Learns to Perceive by Generation as Well as Reweighting of its
Links. In G. E. Hinton, T. J. Sejnowski & D. S. Touretzky (Ed.),

246 Bibliography

Proceedings of the 1988 Connectionist Models Summer School San
Mateo, CA: Morgan Kaufmann.

Honavar, V. & Uhr, L. (1989a). Brain-Structured Connectionist
Networks that Perceive and Learn. Connection Science (to appear)

Honavar, V. & Uhr, L. (1989b). Experimental Results indicate that
Generation, Local Receptive Fields and Global Convergence
Improve Perceptual Learning in Connectionist Networks.
Proceedings of the International Joint Conference on Artificial
Intelligence :.

Hopcroft, J. E. & Ullman, J. D. (1979). Introduction to Automata
Theory. Languages, and Computation . Reading, Mass.: Addison-
Wesley.

Hopfield, J. J. (1982). Neural Networks and Physical Systems with
Emergent Collective Computational Abilities. Proceedings of the
National Academy of Sciences. 7£(April), 2554-2558.

Hopfield, J. J. & Tank, D. (1985). "Neural" Computation of
Decisions in Optimization Problems. Biological Cybernetics. 52(141-
152),

Hopfield, J. J. & Tank, D. W. (1986a). Disordered Systems and
Biological Organization Berlin: Springer-Verlag.

Hopfield, J. J. & Tank, D. W. (1986b). Computing with Neural
Circuits: A Model. Science. 233. 625-633.

Hopfield, J. J. & Tank, D. W. (1987). Concentrating Information in
Time: Analog Neural Networks with Applications to Speech
Recognition Problems. Proceedings of the IEEE First International
Conference on Neural Networks San Diego, CA: IEEE.

Huffman, D. A. (1971). Impossible Objects as Nonsense Sentences.
In E. W. Elcock & D. Michie (Ed.), Machine Intelligence 8 (pp.
493-509). Edinburgh: Edinburgh University Press.

Hummel, R. A. & Zucker, S. W. (1983). On the Foundations of
Relaxation Labeling Processes. IEEE Transactions on Pattern
Analysis and Machine Intelligence. PAMI-5. 267-287.

Neural Networks in Artificial Intelligence 247

Jackendoff, R. (1983). Semantics and Cognition . Cambridge MA:
MIT Press.

Jordan, M. I. (1986a). Attractor Dynamics and Parallelism in a
Connectionist Sequential Machine. Proceedings of the Proceedings of
the Eighth Annual Conference of the Cognitive Science Society :
Erlbaum.

Jordan, M. I. (1986b). Serial Order: A Parallel. Distributed
Processing Approach (technical report ICS-8604). University of
California, San Diego. Institute for Cognitive Science.

Kanade, T. (1980). A Theory of Origami World. Artificial
Intelligence. 13. 279-311.

Kasyap, R. L., Blaydon, C. C. & Fu, K. S. (1970). Stochastic
Approximation. In K. S. Fu & J. M. Mendel (Ed.), Adaptation.
Learning, and Pattern Recognition Systems: theory and applications
New York: Academic Press.

Kay, M. (1973). The MIND System. In R. Rustin (Ed.), Natural
Language Processing New York: Algorithmics Press.

Kienker, P. K., Sejnowski, T. J., Hinton, G. E. & Schumacher, L. E.
(1986). Separating Figure from Ground with a Parallel Network.
Perception. 15. 197-216.

Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization
by Simulated Annealing. Science. 220. 671-680.

Knapp, A. & Anderson, J. A. (1984). Theory of Categorization
based on Distributed Memory Storage. Journal of Experimental
Psychology: Learning. Memory, and Cognition. 10. 616-637.

Kohonen, T. (1988). Self-Organization and Assocative Memory .
Berlin: Springer-Verlag.

Kruschke, J. K. (1988). Creating Local and Distributed Bottlenecks
in Hidden Layers of Back-Propagation Networks. Proceedings of the
1988 Connectionist Summer School Camegie-Mellon University,
Pittsburgh PA: Morgan Kaufmann.

248 Bibliography

Lakoff, G. (1987). Women. Fire, and Dangerous Things . Chicago:
University of Chicago Press.

Lakoff, G. (1988). A Suggestion for a Linguistics with Connectionist
Foundations. In G. E. Hinton, T. J. Sejnowski & D. S. Touretzky
(Ed.), Proceedings of the 1988 Connectionist Models Summer School
San Mateo, CA: Morgan Kaufmann.

Lang, K. (1987). Connectionist Speech Recognition. Thesis Proposal,
Camegie-Mellon University:

Langacker, R. (1987). Foundations of Cognitive Grammar .
Stanford: Stanford University Press.

Langley, P. (1985). Learning to Search: from Weak Methods to
Domain-specific Heuristics. Cognitive Science. 2, 217-260.

Le Cun, Y. (1987). Modeles Connexionnistes le l'Apprentissage .
Ph.D. Thesis, Universite Pierre et Marie Curie, Paris.

Li, T. & Chun, H. W. (1987). A Massively Parallel Network-based
Natural Language Parsing System. Proceedings of the The Second
International Conference on Computers and Applications.

Linsker, R. (1986a). From Basic Network Principles to Neural
Architecture: Emergence of Orientation Columns. Proceedings of
the National Academy of Sciences USA. 83. 8779-8783.

Linsker, R. (1986b). From Basic Network Principles to Neural
Architecture: Emergence of Orientation-selection Cells. Proceedings
of the National Academy of Sciences USA. 83. 8390-8394.

Linsker, R. (1986c). From Basic Network Principles to Neural
Architecture: Emergence of Spatial Opponent Cells. Proceedings of
the National Academy of Sciences USA. 83.7508-7512.

Linsker, R. (1987). Development of Feature-analyzing Cells and
Their Columnar Organization in a Layered Self-adaptive Network.
In R. Cotterill (Ed.), Computer Simulation in Brain Science
Cambridge University Press.

Neural Networks in Artificial Intelligence 249

Lippmann, R. P. (1987). An Introduction to Computing with Neural
Nets. IEEE ASSP Magazine. 4(2), 4ff.

Lippmann, R. P. & Gold, B. (1987). Neural-Net Classifiers Useful
for Speech Recognition. Proceedings of the First International
Conference on Neural Networks , San Diego: IEEE.

Mackworth, A. K. (1977). Consistancy in Networks of Relations.
Artificial Intelligence. 8,99-118.

Marr, D. (1978). Representing Visual Information. In A. R. Hanson
& E. M. Riseman (Ed.), Computer Vision Systems (pp. 61-80). New
York: Academic Press.

McClelland, J. L. (1976). Preliminary Letter Identification in the
Perception of Words and Nonwords. Journal of Experimental
Psychology: Human Perception and Performance. 4, 80-91.

McClelland, J. L. (1985). Putting Knowledge in its Place: A Scheme
for Programming Parallel Processing Structures on the Fly.
Cognitive Science. 9.113-146.

McClelland, J. L. & Elman, J. L. (1986a). Interactive Processes in
Speech Perception: The TRACE model. In D. E. Rumelhart & J. L.
McClelland (Ed.), Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. Volume 1: Foundations.
Cambridge, Mass.: MIT Press.

McClelland, J. L. & Kawamoto, A. H. (1986b). Mechanisms of
Sentence Processing: Assigning Roles to Constituents of Sentences. In
D. E. Rumelhart & J. L. McClelland (Ed.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition.
Volume 1: Foundations. Cambridge, Mass.: MIT Press.

McClelland, J. L. & Rumelhart, D. E. (1985). An Interactive
Activation Model of Context Effects in Letter Perception: Part 1.
Psychological Review. 88. 375-407.

McCloskey, M. & Cohen, N. J. (1987). The Sequential Learning
Problem in Connectionist Models: Paper read at the meetings of the
Psychonomic Society, Washington, November.

250 Bibliography

McCulloch, W. S. & Pitts, W. H. (1943). A Logical Calculus of the
Ideas Immanent in Nervous Activity. Bulletin of Mathematical
Biophysics. 5. 115-133.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. & Teller,
E. (1953) Equation of State Calculations for Fast Computing
Machines. Journal of Chemical Physics. 6 ,1087ff.

Mikkulainen, R. & Dyer, M. (1988). Encoding Input/Output
Representations in Connectionist Cognitive Systems. Proceedings of
the 1988 Connectionist Models Summer School Camegie-Mellon
University: Morgan Kaufmann.

Minsky, M. (1975). A Framework for Representing Knowledge. In
P. Winston (Ed.), The Psychology of Computer Vision New York:
McGraw-Hill.

Minsky, M. & Papert, S. (1969). Perceptrons: An Introduction to
Computational Geometry . Cambridge, Massachusetts: The MIT
Press.

Minsky, M. L. (1977). Plain Talk about Neurodevelopmental
Epistemology. Proceedings of the 5th International Joint Conference
on Artificial Intelligence. 1083-1092 .

Mjolsness, E., Sharp, D. H. & Alpert, B. K. (1988). Scaling.
Machine Learning, and Genetic Neural Nets (technical report
YALEU/DCS/TR-613, Yale; also technical report LA-UR-88-142,
Los Alamos.)

Mjolsness, E. & Sharp, D. N. (1986). A Preliminary Analysis of
Recursively Generated Networks. In J. S. Denker (Ed.), Proceedings
of the AIP Conference on Neural Networks for Computing.

Narendra, K. S. & Thathachar, M. A. L. (1974). Learning
Automata—A Survey. IEEE Transations on Systems. Man. and
Cybernetics. 4(July), 323-334.

Newell, A. (1980). Physical Symbol Systems. Cognitive Science. 4,
135-183.

Neural Networks in Artificial Intelligence 251

Oden, G. C. (1988a). Fuzzy Prop: A Symbolic Superstrate for
Connectionist Models. Proceedings of the Second IEEE International
Conference on Neural Networks San Diego, CA:IEEE .

Oden, G. C. (1988b). Why the Difference Between Connectionism
and Anything Else is More Than You Might Think but Less Than
You Might Hope (technical report, University of Wisconsin, Dept, of
Psychology.)

Oden, G. C. & Rueckl, J. G. (1986). Taking Language by the Hand:
Reading Handwritten Words. Proceedings of the Paper presented at
the Twentv-seventh Annual Meeting of the Psvchonomics Society
New Orleans, LA.

Parker, D. B. (1985). Learning-logic (technical report TR-47).
Sloan School of Management, MIT.

Parker, D. B. (1987). Second order Back-propagation: An Optimal
Adaptive Algorithm for any Adaptive Network (Unpublished
Manuscript)

Patil, R. S. (1987). A Case Study on Evolution of System Building
Expertise: Medical Diagnosis. In W. E. L. Grimson & R. S. Patil
(Ed.), AI in the 1980s and Bevond Cambridge MA: MIT Press.

Pinker, S. (1984). Language Leamabilitv and Language
Development. Cambridge, MA: Harvard University Press.

Pinker, S. & Prince, A. (1988). On Language and Connectionism:
Analysis of a Parallel Distributed Processing Model of Language
Acquisition. In S. Pinker & J. Mehler (Ed.), Connections and
Symbols Cambridge, Mass.: MIT Press.

Plaut, D. C. & Hinton, G. E. (1987). Learning Sets of Filters using
Back-propagation. Computer Speech and Language. 2.

Posner, M. I. (1973). Cognition: An introduction . Glenview, IL:
Scott, Foresman.

Posner, M. I. & Keele, S. W. (1968a). On the Genesis of Abstact
Ideas. Journal of Experimental Psychology. 83. 353-363.

252 Bibliography

Posner, M. I. & Keele, S. W. (1968b). Retention of Abstact Ideas.
Journal of Experimental Psychology. 83. 304-308.

Pribram, K. (1971). Languages of the Brain . Englewood Cliffs, NJ:
Prentice-Hall.

Pylyshyn, Z. W. (1984). Computation and Cognition: Toward a
Foundation for Cognitive Science . Cambridge MA: MIT Press.

Rabiner, L. R. & Juang, B. H. (1986). An Introduction to Hidden
Markov Models. IEEE Acoustics. Speech and Signal Processing
Magazine. 4-16.

Randell, B., Lee, P. A. & Treleaven, P. C. (1978). Reliability Issues
in Computer System Design. Computing Surveys. 10(2). 123-165.

Reber, A. S. (1967). Implicit Learning of Artifical Grammars.
Journal of Verbal Learning and Verbal Behavior. £, 855-863.

Reeke, G. N. & Edelman, G. M. (1988). Real Brains and Artificial
Intelligence. In S. R. Graubard (Ed.), The Artificial Intelligence
Debate: False Starts. Real Foundations Cambridge, Mass.: MIT
Press.

Reggia, J. A., Marsland, P. M. & Bemdt, R. S. (1988). Competitive
Dynamics in a Dual-route Connectionist Model of Print-to-sound
Transformation. Complex Systems. 2, 509-547.

Regier, T. (1988). Recognizing Image-Schemas Using
Programmable Networks. In G. E. Hinton, T. J. Sejnowski & D. S.
Touretzky (Ed.), Proceedings of the 1988 Connectionist Models
Summer School San Mateo, CA: Morgan Kaufmann.

Rosenberg, C. R. (1987). Revealing the Structure of NETtalk's
Internal Representations. Proceedings of the Ninth Annual
Conference of the Cognitive Science Society (pp. 537-554). Seattle,
WA: Erlbaum.

Rosenblatt, F. (1961). Principles of Neurodvnamics: Perceptrons and
the Theory of Brain Mechanisms . Washington DC: Spartan Books.

Neural Networks in Artificial Intelligence 253

Rosenbloom, P. S. & Newell, A. (1986). The Chunking of Goal
Hierarchies: A Generalized Model of Practice. In R. S. Michalski, J.
G. Carbonell & T. M. Mitchell (Ed.), Machine Learning: An
Artificial Intelligence Approach. Vol. II Los Altos, CA: Morgan
Kaufmann.

Rosenfeld, A. & Kak, A. C. (1976). Digital Picture Processing . New
York: Academic Press.

Rosenfeld, R. & Touretzky, D. (1988). Coarse-Coded Symbol
Memories and their Properties. Complex Systems.

Rueckl, J. G. (1986). A Distributed Connectionist Model of Letter
and Word Identification . Ph.D. Thesis, University of Wisconsin.

Rueckl, J. G., Cave, K. R. & Kosslyn, S. M. (1988). Why are
"What" and "Where" Processed by Separate Cortical Visual Systems?
A Computational Investigation. Journal of Cognitive Neuroscience.

Rumelhart, D. & McClelland, J. (1986a). On Learning the Past
Tenses of English Verbs. In J. McClelland & D. Rumelhart (Ed.),
Parallel Distributed Processing: Explorations in the Microstructure
of Cognition: Vol. 2: Psychological and Biological Models
Cambridge, Mass.: MIT Press.

Rumelhart, D. & McClelland, J. (1986b). Parallel Distributed
Processing: Explorations in the Microstructure of Cognition: Vol. 1:
Foundations. Vol. 2: Psychological and Biological Models.
Cambridge, Mass.: MIT Press.

Rumelhart, D. & Zipser, D. (1985). Feature Discovery by
Competitive Learning. Cognitive Science. 9, 75-112.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986c). Learning
Internal Representations by Back-propagating Errors. Nature.
221(533-536),

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986d).
Learning Internal Representations by Error Propagation. In D. E.
Rumelhart & J. L. McClelland (Ed.), Parallel Distributed
Processing: explorations in the microstructure of cognition: vol. 1:
Foundations Cambridge, Massachusetts: The MIT Press.

254 Bibliography

Rumelhart, D. E. & McClelland, J. L. (1986e). PDP Models and
General Issues in Cognitive Science. In D. E. Rumelhart & J. L.
McClelland (Ed.), Parallel Distributed Processing: Vol. 1:
Foundations Cambridge, Mass.: MIT Press.

Rumelhart, D. E., Smolensky, P., McClelland, J. L. & Hinton, G. E.
(1986f). Schemata and Sequential Thought Processes in PDP Models.
In J. L. McClelland & D. E. Rumelhart (Ed.), Parallel Distributed
Processing: Explorations in the microstructure of cognition: vol. 2:
Psychological and Biological Models Cambridge, Mass.: MIT Press.

Sabbah, D. (1985). Computing with Connections in Visual
Recognition of Origami Objects. Cognitive Science. 9,25-50.

Saito, K. & Nakano, R. (1988). Medical Diagnostic Expert System
Based on PDP model. Proceedings of the IEEE International
Conference on Neural Networks. San Diego: IEEE.

Samuel, A. L. (1963). Some Studies in Machine Learning Using the
Game of Checkers. In E. A. Feigenbaum & J. Feldman (Ed.),
Computers and Thought New York: McGraw-Hill.

Sandon, P. A. & Uhr, L. M. (1988). A Local Interaction Heuristic
for Adaptive Networks. Proceedings of the IEEE International
Conference on Neural Networks San Diego: IEEE.

Sankoof, D. & KruskalJ.B. (Ed.) (1983). Time Warps, String Edits,
and Macromolecules : the Theory and Practice of Sequence
Comparison. Reading, MA: Addison-Wesley.

Schank, R. C. & Abelson, R. P. (1977). Scripts. Plans. Goals, and
Understanding . Hillsdale, NJ: Erlbaum.

Schwartz, J. T. (1988). The New Connectionism: Developing
relationships between Neuroscience and Artificial Intelligence. In S.
R. Graubard (Ed.), The Artificial Intelligence Debate: False Starts.
Real Foundations Cambridge, Mass.: MIT Press.

Sejnowski, T. J. & Rosenberg, C. (1986). NETtalk: A Parallel
Network that Learns to Read Aloud (technical report JHU-EECS-86-
01). Johns Hopkins University.

Neural Networks in Artificial Intelligence 255

Sejnowski, T. J. & Rosenberg, C. (1987). Parallel Networks that
Learn to Pronounce English Text. Complex Systems. 1(145-168),

Selman, B. & Hirst, G. (1987). Parsing as an Energy Minimization
Problem. In L. Davis (Ed.), Genetic Algorithms and Simulated
Annealing Pitman: London.

Servan-Schreiber, D., Cleeremans, A. & McClelland, J. L. (1988).
Encoding Sequential Structure in Simple Recurrent Networks
(technical report CMU-CS-88-183). Camegie-Mellon University.

Shastri, L. (1988). A Connectionist Approach to Knowledge
Representation and Limited Inference. Cognitive Science. 12. 331-
392.

Shepard, R. N. (1962). The Analysis of Proximities: Multi
dimensional Scaling with an Unknown Distance Function, I & II.
Psvchometrika. 27. 125-40, 219-46.

Smolensky, P. (1986). Information Processing in Dynamical
Systems: Foundations of Harmony Theory. In J. McClelland & D.
Rumelhart (Ed.), Parallel Distributed Processing: Explorations in the
Microstructure of Cognition: vol. 1: Foundations Cambridge, Mass.:
MIT Press.

Smolensky, P. (1988). On the Proper Treatment of Connectionism.
Behavioral and Brain Sciences. 11.1-23.

Steinbuch, K. (1963). Automat und Mensch . Berlin: Springer.

Sutton, R. S. (1984). Temporal Aspects of Credit Assignment in
Reinforcement Learning . Ph.D. Thesis, University of Massachusetts.

Sutton, R. S. (1988). Learning to Predict by the Methods of
Temporal Differences. Machine Learning. 2., 9-44.

Tanimoto, S. L. (1978). Regular Hierarchical Image and Processing
Structures in Machine Vision. In A. R. Hanson & E. M. Riseman
(Ed.), Computer Vision Systems New York: Academic Press.

256 Bibliography

Taylor, W. K. (1956). Electrical Simulation of Some Nervous
System Functional Activity. In E. C. Cherry (Ed.), Information
Theory London: Butterworths.

Touretzky, D. S. (1986). BoltzCONS: Reconciling Connectionism
with the Recursive Structure of Stacks and Trees. Proceedings of the
8th Annual Conference of the Cognitive Science Society , 155-64.

Touretzky, D. S. (1987). Representing Conceptual Structures in a
Neural Network. Proceedings of the IEEE First International
Conference on Neural Networks San Diego: IEEE.

Touretzky, D. S. (1988). Connectionism and PP Attachment. In D.
Touretzky, G. Hinton & T. Sejnowski (Ed.), Proceedings of the 1988
Connectionist Models Summer School (pp. 325-332). Camegie-
Mellon University: Morgan Kaufinann.

Touretzky, D. S. (1989a). Connectionism and Compositional
Semantics (technical report CMU-CS-89-147). Computer Science
Department, Camegie-Mellon University.

Touretzky, D. S. (1989b). Rules and Maps in Connectionist Symbol
Processing (technical report CMU-CS-89-158). Computer Science
Department, Camegie-Mellon University.

Touretzky, D. S. (1989c). Towards a Connectionist Phonology: the
"Many Maps" Approach to Sequence Manipulation (technical report
CMU-CS-89-158). Computer Science Department, Camegie-Mellon
University.

Touretzky, D. S. & Hinton, G. E. (1985). Symbols Among the
Neurons: Details of a Connectionist Inference Architecture.
Proceedings of the International Joint Conference on Artificial
Intelligence,Los Angeles.

Touretzky, D. S. & Hinton, G. E. (1988). A Distributed
Connectionist Production System. Cognitive Science. 12(3), 423-466.

Uhr, L. (1972). Layered Recognition Cone Networks that
Preprocess, Classify, and Describe. IEEE Transactions on
Computers. 21. 758-768.

Neural Networks in Artificial Intelligence 257

Uhr, L. (1983). Pyramid Multi-computer Structures, and Augmented
Pyramids. In M. J. B. Duff (Ed.), Computing Structures for Image
Processing London: Academic Press.

Uhr, L. (1987). Highly parallel, hierarchical, recognition cone
perceptual structures. In L. Uhr (Ed.), Parallel Computer Vision
New York: Academic Press.

Ullman, S. (1984). Visual Routines. Cognition. 18. 97-159.

Utgoff, P. E. (1986). Shift of Bias for Inductive Concept Learning.
In R. S. Michalski, J. G. Carbonell & T. M. Mitchell (Ed.), Machine
Learning: An Artificial Intelligence Approach Los Altos, CA:
Morgan Kaufmann.

Valiant, L. G. (1984). A Theory of the Leamable. Communications
of the ACM. 27. 1134-1142.

Von der Molsburg, C. (1973). Self-organization of Orientation-
sensitive Cells in Striate Cortex. Kvbemetik. 14(85-100),

Von Neumann, J. (1956). Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Components. In C. E. Shannon
& J. McCarthy (Ed.), Automata Studies Princeton, N.J.: Princeton
University Press.

Waltz, D. (1975). Generating Semantic Descriptions from Drawings
of Scenes with Shadows. In P. Winston (Ed.), The Psychology of
Computer Vision (pp. 19-92). New York: McGraw-Hill.

Waltz, D. L. & Pollack, J. B. (1985). Massively Parallel Parsing: A
Strongly Interactive Model of Natural Language Interpretation.
Cognitive Science. 9, 51-74.

Watrous, R. L. & Shastri, L. (1987). Learning Phonetic Features
using Connectionist Networks: An Experiment in Speech
Recognition. Proceedings of the First International Conference on
Neural Networks San Diego: IEEE.

Werbos, P. J. (1974). Bevond Regression: New Tools for Prediction
and Analysis in the Behavioral Sciences . Ph.D. Thesis, Harvard
University.

258 Bibliography

Wickelgren, W. A. (1969). Context-sensitive Coding, Associative
Memory, and Serial Order in (Speech) Behavior. Psychological
Review. 76(44-60).

Widrow, B. (1962). Generalization and Information Storage in
Networks of Adaline Neurons. In M. C. Yovits, G. T. Jacobi & G.
D. Goldstein (Ed.), Self-Organizing Systems 1962 Washington DC:
Spartan Books.

Widrow, B., Gupta, N. K. & Maitra, S. (1973). Punish/reward:
Learning with a Critic in Adaptive Threshold Systems. IEEE
Transactions on Systems. Man. and Cybernetics. 5, 455-465.

Widrow, B. & Hoff, M. E. (1960). Adaptive Switching Circuits. IRE
WESCON Conv. Record. Part 4.. , 96-104.

Widrow, B. & Steams, S. D. (1985). Adaptive Signal Processing .
Prentice-Hall.

Wilensky, R. (1986). Common LISPcraft. New York: W.W.
Norton.

Willshaw, D. (1981). Holography, Associative Memory, and
Inductive Generalization. In G. E. Hinton & J. A. Anderson (Ed.),
Parallel Models of Associative Memory Hillsdale, N J.: Erlbaum.

Willshaw, D. J., Buneman, O. P. & Longuet-Higgins, H. C. (1969).
Non-holographic Associative Memory. Nature. 222.

Winograd, T. (1983). Language as a Cognitive Process . Reading,
Mass.: Addison-Wesley.

Zadeh, L. A. (1973). Outline of a New Approach to the Analysis of
Complex Systems and Decision Processes. IEEE Transactions on
Systems. Man and Cybernetics SMC-3. (January), 22-44.

Zucker, S., Hummel, R. & Rosenfeld, A. (1977). An Application of
Relaxation Labeling to Line and Curve Enhancement. IEEE
Transactions on Computers. C-26(4I 394-403.

Index

Abelson, R.P. 144
Ackley, D. H. 62, 63, 65, 67,
86, 93, 115, 124
activation 15
activation functions 42,48
ACTORS 38
acuteness 165
Adaline 49
Adaline convergence rule, 49
Adaptive Resonance Theory 78
adaptive filters 81
adaptive heuristic critic (AHC)
learning method 101
addition problems 115
Adeline 43
Allen, R.B. 64
Alpert, B.K. 93
Alspector, J. 64
Amari, S. 73, 111
Anandan, P. 94, 106
Anderson, C. 45, 102
Anderson, J. 43, 51, 58
Anzai, Y.109
ART 78
artificial intelligence 11
Ash, T.42
associationist psychology 17,
35, 39
associative learning 43,51

associative pair task 116
associative reinforcement
learning 95
associative reward-inaction
(AR-I) algorithm 97
associative reward/penalty
(AR-P) algorithm 45,96
attentional focusing 80
attentional gain control 80
attentional priming 80
attentional subsystem 78
attractor dynamics 121
attractors 121
auto-associator 56, 57
auto-associator. 41
autonomous syntax 193
Axelrod , R.92
back-propagation 71,102, 111,
113, 115, 117, 122, 131, 149,
160, 164, 172, 184, 221, 236
Bahl, L.R. 158
balancing a pole on a cart 102
Ballard, D.H. 21, 43, 46, 47,
111,211
bandpass filters 159
Barlow, H.B. 20
Barto, A. 45, 94, 102, 106
Barwise, J.21

260 Index

Bayesian inference theory 38,
153
behaviorism 17, 29, 35
Bemdt, R.S.168
best fit Principle 34
Bienenstock, E. L. 51, 75
binary associator 56
binary-threshold activation
rule 48, 69
bind space 124
biological evolution 62, 111
Blaydon, C.C. 96
blocks-world 179
BoltzCONS 124,147
Boltzmann machine 10, 43, 44,
62, 112, 115, 124, 187, 225
bottlenecks 113
bounded overlap method 25
brain 19, 30, 32, 38, 39, 57,
62, 73, 86, 236
brittleness 30
Brown corpus 222
Broyden-Fletcher-Goldfard-
Shanno algorithm 165
BSB 54
Buneman, O.P.51
Burt, PJ. 183
c-joints 179
car 124
car space 125
Carpenter, G.A. 73, 78
case role 212, 214
case theory 210
categorical perception 167
categorization 27, 89
causality 37
CCSM 23
CDR 124
cdr space 125
central representation 167
Chamiak, E. 197, 223
chart parser 205

checkers 64
chess 111
Chomsky, N. 35,193
Chun, H.W. 197, 215
classification 18, 42,45, 53,
95, 106, 159
clause space 128
Clowes, M.B. 177,179
clustering 112
co-articulation 120
coarse-coding. 22, 23, 47, 129,
228
cognitive linguistics 192
cognitive topology 178,192
cognitivism 29, 35
Cohen, N.J. I l l , 115
combinatorial explosion 21,
33, 133
competitive learning 45, 73,
169
compositional semantics 36
compositionality 37
computer vision 183
concept buffer 141
concept memory 141
conceptual level 29
cone-shaped networks 177
Connection Information
Distributor (CID) 167, 221
Connection Machine 38
connection evolution equation
30
connectionism 16
connectionist dynamical system
hypothesis 30
connectivity matrix 52
cons pullout space 125
cons 124
cons memory 125
conscious rule application 32
constituent structure 33
constraint satisfaction 43

Neural Networks in Artificial Intelligence 261

constraint-satisfaction problem
44
constraints 34
content-addressability 27
content-addressable memory
41,57
context 213
context units 200
context-free grammar 9, 196,
198, 216, 218, 223
context-free representation 33
context-sensitive effects 166
contextual model (CM) 234
continuous 33
continuousness 26
contrast enhancement 79
conventional serial computers
31
Cooper, L.N. 51, 75
correlation 175, 212
Cottrell, G.W. 196, 197, 210,
221
CRAM 144
credit assignment 98
crossover 91
crosstalk 22, 52, 56, 131
CYK parsing scheme 218
Darwin I,II and HI 88
database 41,55
delta rule 68
demons 217
deterministic algorithm 63
development 87
Dieterich, J. 42
differential equations 31, 44,
60
differential reinforcement 88
diffuseness 165
dimensional compression 115
dipole stimuli 74
discount rate 108
discrete models 26

disjunctive normal form 46
distributed bottlenecks 113
distributed memory 16, 20, 26,
31 33, 52, 71, 148, 214
diversity 87
DNA sequences 160
Doddington, G.R. 160
Dolan, C.P. 140
dot product 18, 52
DUCS 24, 124,128,138,141
Duda, R.O. 96, 160
Dyer, M. G. 112, 140, 148
dynamical system 30
dyslexia 172
early learning models 49
Edelman, G.M. 73, 86, 184
Edge extraction 43, 179
eliminativist 35
Elman, J.L. 157, 165, 195, 200
encoder problem 66, 114
error surface 70
Euclidean distance 18
Euclidian match problem 62
evaluation network 107
evidential reasoning 154
evolution 56, 86
exclusive-or 45, 67, 70, 102
exclusive-or function 50
expert systems 127
exploded case representation
210
extensional programming 123
extensions to learning
algorithms 111
extraction of rules 133, 136
factor analysis 175
family trees 71
Fanty, M. 21, 198, 218
fast Fourier transform 159
feed-forward 43, 50, 73, 122,
161 168, 189

262 Index

feed-forward network 68, 71,
117, 131,172
Feigenbaum, E. A. 90
Feldman, J.A.21, 43, 46, 47,
211
Fennel, R.D. 205
figure and ground 178, 185
Fillmore, C.J. 210
finite-state machine 195, 201
fitness 91
Fodor, J. A. 29, 30, 33, 123,
213, 236
formant 162
Forster, K. I. 232
Fourier transform 38
frame 140, 152
frames 140
frequencies 152
Fu, K.S. 96
Fukushima, K.73
fuzzy logic 19, 38, 61
fuzzy propositional model 27
fuzzy set theory 27, 61,152
gain 113
Gallant, S.E.127, 134
game playing 30
"garden path" sentences 222
gated connection 47
Gaussian classifier 160
Gelatt, C.D. 63
Geman, D. 43
Geman, S. 43
generalization 17, 27, 71, 72,
89, 113
generalized delta rule 67
generation 178
genetic algorithms 45, 91
genetic nets 93
ghost 22, 23
global minimum 44, 63
Gold, B. 158
goodness-of-fit 140

gradient descent 116, 140
Gram-Schmidt process 55
grandmother neurons 21
graph coloring 62
Graubard, S.R. 29
Greenough, W.T. 185
Grossberg, S. 73, 78
Hamming distance 19
Hanna, P.R.168
Hanson, S. 197
hardware 62, 131, 162
Harmony theory 34
Hart, P.E. 96, 160
HEARSAY H 205
Hebb, D.O. 43, 51
Hebbian learning 43, 51, 54
Hebbian learning rule 162
hetero-associator 41
heuristic reinforcement functio
107
heuristic search 45
heuristics 135
Hewett, C.38
hidden Markov models
(HMMs) 158
hierarchical architectures 183
hierarchical clustering 85,175
hierarchical set relationship 84
Hillis 38
Hinton, G. E. 24, 32, 62, 67,
71, 111, 117, 122, 124, 127,
128, 138, 139, 144, 145,147,
148, 185, 233
Hirst, G. 197, 225
Hoff, M.E. 68
Holland, J.H. 91
holographic theory of memory
22
Honavar, V. 42, 177, 183, 185
Hopcroft, J.E. 218
Hopfield energy-minimizing
relaxation 139

Neural Networks in Artificial Intelligence 263

Hopfield, J.J.144, 157,160
Hopfield-Tank units 142
Hough transform 181
Huffman, D. A. 177, 179
human DNA 87
human memory 41
human visual system 183
Hummel, R. 43
hyper-surface 70
hypercube 54
image compression 122
image-schemas 193
implementation.39
indirect competition 169
inheritance 151, 153
input nodes 15
internal representations 174
intuitive processor 30
iterated genetic hill-climbing
93
Jackendoff, R. 21
Jelinek, F. 158
Jordan, M.I. 120
Juang, B.H. 158
k-nearest neighbor classifier
160
Kak, A.C. 179, 194
Kanade, T. 179
Kasyap, R. L. 96
Kawamoto, A.H. 145,196,
199, 212
Kay, M. 205
Keele, S.W. 52
Kegl, J.197
Kienker, P.K. 178, 185
Kirkpatrick, S. 63
knowledge representation 11,
138 208
Kohonen, T. 18, 43, 49, 51,
54, 55, 58, 73, 74, 82, 150
Kruschke, J.K. I l l , 113
Kruskal, J.B. 161

1-joints 179
labeled links 36
Lagrange multipliers 153
Lakoff, G. 178, 192
Lang, K. 158
Langacker, R. 192
language processing 11, 31, 60,
62
lateral inhibition 82, 212
Le Cun 67
learning matrix 51
learning of the past tense 198,
227
learning rate 49
learning rule 42,50, 52
Lenin, V.I. 26
letter and word recognition 75
letter detectors 76
lexical ambiguity 196, 205,
215
lexical semantics 196
Li, T. 197, 215
Liberman, F. 51
line drawings 43, 177
Linear Reward-Penalty (LR-P)
algorithm 94
linear activation rule 48, 69
linear associator 54, 118
Linsker, R. 54
Lippmann, R.P. 81, 158
LISP 35, 124, 195
local bottleneck 113
local connectionism 20
local interaction heuristic 112
local minima 44, 111
local representation 21, 148,
189
logic 30, 46, 236
logical decomposition 208
logistic function 107
long-term memory 78
Longuet-Higgins, H.C. 51

264 Index

look-up table 78, 98
MACIE 135
Mackworth, A.K. 43
macroconfiguration 153
macrodecisions 34
Manhattan distance 18
markers 198
Marr, D. (1978) 39
Marsland, P.M. 168
max-of-sum unit 46
McClelland, J.L. 16, 24, 31,
37, 111, 139, 145, 157, 165,
167, 196, 198, 199, 212, 221,
227, 232, 235
McCloskey, M. I l l , 115
McCulloch, W.S.19
medical diagnosis 131,134
mentalism 35
Mercer, R. L. 158
merge clustering 150
Metropolis, N. 63
MICON 209
microdecisions 34
microfeatures 21, 36, 140,
141, 148, 209, 213, 215
Miikkulainen, R. 148
minimal complexity heuristic
184
Minkowski metric 18
Minsky, M. 16, 50, 67, 71,
103, 138, 140, 152
Mjolsness, E. 93
mock speech 166
model neurons 46
morphology 231
MPNP Parsing System 215
multi-dimensional scaling 31,
115, 191
multi-step problems 99
multiplexer function 103
Munro, P.W. 51, 75
Nakano, R. 127,131, 136

Narendra, K.S. 94
natural language 29,195, 200
natural selection 45,184
NETtalk 158, 172,197
neurobiology 17, 62
neuronal group selection
(NGS) 87,184
Newell, A. 29
Newtonian mechanics 34
NGS 87,184
noise 112
Non-linear Auto-associator 56
non-linear model 44
non-words 172
normalization 182
novelty filter 55
number systems 22
object identity representation
(OI) 233
object-centered feature map
(OFM) 232
Oden, G.C. 26
Ohm's law 34
Oja, E. 51
OPS5 131
optimization 44, 60, 91, 165
orienting subsystem 79
Origami world 179
orthogonal projection 56
output nodes 15
over-generalization, 199
over-regularization 172
p-and-q-unit 47
Papert, S.16, 50, 67, 71, 103
Parallel Distributed Processing
16
parallel computers 16
parameter spaces 179
Parker, D.B. 67, 111
parse tree 33
parsimony 113
parsing 197, 205, 218, 225

Neural Networks in Artificial Intelligence 265

PARSNIP 197, 221
pattern matching 128
perception convergence
algorithm 103
Perceptron 43, 44, 50, 67, 105
perceptron convergence
procedure 67, 197
perceptron convergence rule
84, 229
Perceptrons 16,57, 67
performance degradation 150
performance measure 103
Perry, J. 21
philosophical Issues 29
phonemic data 85
phonology 193, 231
photograph 177
physical symbol system
hypothesis (PSSH) 29,146
physical systems 86
Pinker, S. 198, 200, 227, 230
plan units 120
Plaut, D. I l l , 117
pocket algorithm 134
Pollack, J. B. 231
population biology 86
position-independent
classification 90
Posner, M.I. 52
precision 132
prediction-from-examples, 33
prediction-goal 33
prepositional phrases 36
Pribram, K. 22
Prince, A. 198, 200, 230
principal components
transform (PCT) 122
Print-to-speech 168
Prisoner's Dilemma 92
probability 152
problem solving 45,102
problem-solving 107

procedural memory 145
production and expert systems
11
production systems 128
PROLOG 195
prototypes 52
PSSH 29
pyramids 183
q-unit 46
qualitative physics 34
quantization 122
quantum mechanics 34
Rabiner, L.R. 158
radix 22
Randell, B. 20
random receptors model 23
random walk 100
randomness 44
re-entry 88
receptive field 22,178, 190,
236
recognition cones 177,183
recognize-act cycle 128
recurrent connections 120
recurrent network 195
recursive structures 123
redundancy 20
Reeke, G.N. 73, 86, 184
Reggia, J.A. 158, 168
Regier, T. 178, 193
rehearsing 116
reinforcement algorithms 45,
94
reinforcement learning 42, 102
relation factor 132
relaxation 43, 171, 179, 181,
187
remembering 203
repertoires 87
retina 90
retinotopic feature map (RTM)
232

266 Index

reverse-engineering 62
reversi 111
Robbins-Monro algorithm 96
roles 149
rooms 139
Rosenberg, C.R. 158,172, 197
Rosenblatt, F. 49,103
Rosenbluth, A. 63
Rosenfeld, A. 23, 25, 43, 179,
194
round-robin tournament 92
Rueckl, J G. 27,178,198
rule clique 225
rule interpreter 30
rule-based systems 17,127,
131
Rumelhart, D. 16, 24, 26, 29,
31,34, 37, 45, 67, 69,71,73,
75, 84, 122, 139, 198, 199,
227, 232
S-knowledge 32
Sabbah, D. 21, 177,178
Saito, K. 127,131,136
Samuel, A.L. 64
Sandon, P.A. I l l , 112
Sankoof, D. 161
Santos, E. 197, 223
Schank, R.C. 144
schemata 34,139,144
Schumacher, L.E. 185
search heuristics 109
Sejnowski, TJ.62,158, 172,
185, 197
selective bootstrap algorithm
98
self-organization 82
self-organizing feature map
150
self-organizing maps 74
self-scaling 78
Selman, B. 197, 225
semantic interpretation 29

semantic networks 36
semantics 178,193
semi-linear activation function
48, 68
sentence interpretation 205
sentence completion task 197
sequence comparison 160
sequential learning 115
sequential processing 46,120
Servan-Schreiber, D. 195, 200
set containment relation 138
Shalk, T.B. 160
shared-memory
multiprocessors 38
Sharp, D. 20, 93
Shastri, L. 21, 138, 151, 157,
163
Shepard, R.N. 31, 115, 191
short-term memory 79
sigmoid activation function 28,
70, 82, 123
Simon, H.A. 109
simulated annealing 59, 64,
226
skewed faces 179
Skinner, B.F. 35
slow weights 117
Small, S.L. 196, 210
Smolensky, P. 29, 139
speech recognition 11,60,
62,157, 160
speech synthesis 11,158
spotlight 186
spreading activation 194
stable limit points 44, 57
stack 125
state units 120
state vector 30
Statistical inference 17
statistical associative models 17
statistical correlations 18
Steams, S. I l l

Neural Networks in Artificial Intelligence 267

steepest gradient descent 70
Steinbuch, K. 51
stimulus-response (S-R)
conditioning 51
sub-conceptual level 29
sum squared error 69
supervised learning 42, 43, 49,
67
Sutton, R.S. 45, 98,102, 107
symmetric connections 59
synapse 15,60
systematicity of language 37
t-joints 179
tag space 125
Tanimoto, S.L. 112
Tank, D.W.44, 60, 157, 160
Taylor, W.K.51
TD(1) 99
teacher 42
Teller, A. 63
Teller, E. 63
temperature 44
temporal difference methods
45, 98
temporal flow model 163
Texas Instruments Isolated
Word Data Base 160
Thathachar, M.A.L.94
thermodynamics 44, 58
threshold 63
time series 45
TIT-for-TAT 92
top-down expectations 217
topological map 84
topologies 71
topology 42, 236
topology-preserving mapping
83
Touretzky, D.S. 17, 23, 32, 36,
124, 127, 128, 140, 147
Towers of Hanoi 102,109
TRACE model 157,165

traditional Al 29
transfer effect 118
transform 184
transition probabilitie 205
transposition code problem 62
traveling salesman problem 44,
60, 62
trees 125
triples 129
twins 87
type/token distinction 147, 236
Uhr, L.42, 111, 112, 177, 183
Ullman, J.D. 185, 193, 218
uniform degradation 21, 38
unit cube 145
University of Massachusetts 45
University of Rochester 21,
154
Unsupervised learning 42, 45
unsupervised classifier 78
unsupervised learner 86
update rule. 15
Utgoff, P.E. 102
variable binding 128
VAX 64
Vecchi, M.P.63
Verbal Behavior 35
vertical and horizontal lines 76
vigilance level 80
vigilance threshold 81
visible units 64
vision 62
visual cortex 54
visual motion 160
visual perception 177
visual perception and pattern
recognition 11
visual routines 193
VLSI 64
vocalization 165
Von der Malsburg, C. 73
Von Neumann machine 31, 37

268 Index

Von Neumann, J. 20
Wallace subsystem 89
Waltz 43, 177, 179, 231
Waltz, D.L.196
Watrous, R.L. 157, 163
Werbos, P.J. 67
wickelfeature 25, 228
wickelphone 24, 228
Widrow, B. 49, 68, 98, 111
Williams, RJ. 122
Willshaw, D.J. 51, 56
winner-take-all network 47,
61, 66, 73, 79 124, 145,162,
182
Winograd, T. 226
word sense disambiguation 210
word detectors 76
word perception 167
word recognition 232
word regularity 171
word repetition effect 199
working memory 129, 145
Zadeh, L.A. 19, 38, 61, 152
Zipser, D. 73, 75, 84
Zucker, S. 43

Graduating from Harvard University with a B.A. in Physics
in 1984, and from the University of Wisconsin with an M.S.
in Computer Sciences in 1987* Matthew Zeidenberg is a
doctoral candidate in the Computer Sciences Department
of the University of Wisconsin. His research concerns the
use of neural networks to interpret articles on various
topics in computer science, including artificial intelli
gence, operating systems, user interfaces, and computer
graphics.

VECTOR AND PARALLEL COMPUTING
Issues in Applied Research and Development
JACK J. DONGARRA, IAIN DUFF, PATRICK GAFFNEY, and SEAN McKEE, Bergen Scientific
Centre, Norway
Vector and parallel computing is a fast-expanding area of computing science, o f relevance
to many companies engaging in research into the commercial viability of parallel
computing. The editors of this volume have collated the latest research findings of a vast
range of individuals, representing the views of commerce and industry as well as academia,
into a tim ely work which w ill reflect the world-wide interest of governments who are
investing substantial funds into future research and applications.

TASK ANALYSIS FOR HUMAN-COMPUTER INTERACTION
DAN DIAPER, Department of Computer Science, University o f Liverpool
Task Analysis (TA) is one of the major methodological approaches available to
Human-Computer Interaction (HCI) specialists. This book contains descriptions of a
representative set of task methods that may all be used in computer system design and
development.

omputer Science, University of Liverpool
Expert and knowledge-based systems now form a market worth annually billions of dollars:
this new book shows how knowledge engineering has progressed exponentially, from its
theoretical foundations through a review of techniques for eliciting domain experts
knowledge and representing it, to the application of such knowledge to real world problems.

ANALYSIS FOR KNOWLEDGE-BASED SYSTEMS
A Practical Guide to the KADS Methodology
FRANK R. HICKMAN, JONATHAN L. KILLIN, LISE LAND,TIM MULHALL, DAVID PORTER, and
ROBERT M. TAYLOR, Touche Ross Management Consultants, The Knowledge-Based
Systems Centre, London
Editorial Collaborator: ROBERT M. TAYLOR
This book is a practical guide to using the most well-researched techniques in analysis for
knowledge-based systems that exist today. It describes the 'KADS' methodology for the
modelling of knowledge, developed over five years under the CEC ESPRIT collaborative
research programme.

ARTIFICIAL INTELLIGENCE TERMINOLOGY
A Reference Guide
General Editor: COLIN BEARDON, Department of Computer Science, University of Exeter
Editorial Board: COLIN HAND, IT Research Institute, Brighton Polytechnic; DAVID
LUMSDEN, University of Sussex; PAOLA RUOCCO, MARLENE TEAGUE, and NOEL
SHARKEY, all of the University of Exeter
This book provides a valuable source of reference for all those who come across words or
phrases from the field of Al which they find strange or meaningless. It offers a description of
the meaning of over one thousand such terms, and anyone needing to understand the
meaning and significance of expressions in the language of artificial intelligence, from
elementary to expert level, w ill find this book a constant source of assistance.

PRACTICAL USAGE OF ISPF DIALOG MANAGER
ANTHONY S. RUDD, Technical Consultant, DATEV West Germany
This book describes, in a concise and complete way, the practical usage of the Dialog
Manager product of the IBM ISPF package. The use and interactions of the various
components are described, using diagrams to illustrate the topics discussed and there is a
selection of examples, which are straightforward, consistent and clarify the text.

ISBN D-13-blElflS-3

ISBN 0-13-612185-3 9 780136 121855

