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Preface

The purpose of this book is to serve as a relatively brief 
introduction to the field of neural networks and their uses in 
cognitive simulation. There is tremendous interest in this field, but, 
at this writing, there is no book that attempts to overview the field in 
a balanced and rigorous fashion. There has been an enormous 
amount of research done in this area in the past several years. I try 
to present some of the best and most representative research in the 
field; since the amount of research that has been done is so large, I 
have been unable to cover all of it. I have also provided a 
bibliography, which is referenced throughout. Each chapter begins 
with an overview of the work in a particular area (for example, 
natural language processing) and proceeds to a review of important 
and/or representative work in that area.

Chapter 1 overviews the field of neural networks, reviews 
some of their history, and discusses some of the basic conceptual and 
philosophical issues involved. Chapter 2 gets into the mathematical 
specifics of the various network models.

Chapters 1 and 2 are prerequisites for the remaining chapters 
in the book, which are each devoted to a particular area of artificial 
intelligence(AI). Chapter 3 is devoted to the area of production and 
expert systems. Chapter 4 is concerned with knowledge 
representation. Speech recognition and synthesis is the topic of 
Chapter 5. Chapter 6 concerns visual perception and pattern 
recognition. Chapter 7 covers language understanding. As may be 
observed by even a cursory examination of Chapters 2-7, there are 
few problems in Al that have not been explored using the 
connectionist paradigm. Any one of Chapters 2-7 can be read
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independently, although there are relationships between chapters, 
particularly between Chapters 4 and 7, since knowledge 
representation is necessary for language understanding, and between 
Chapters 5 & 6, which both deal with problems—vision and 
speech—in the domain of perception.
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1

Issues in Neural Network 
Modeling

1.1. Introduction
The past five years or so have seen a substantial amount of 

work being done in the area of neural network modeling. This 
research attempts to build model neural networks that solve 
significant psychological problems, such as natural language 
understanding, visual processing, etc.

A neural network is a computational model that is a directed 
graph composed of nodes (sometimes referred to as units or 
neurons) and connections between the nodes. With each node is 
associated a number, referred to as the node’s activation. Similarly, 
with each connection in the network, a number is also associated, 
called its weight. These are (very roughly) based on the firing rate 
of a biological neuron and the strength of a synapse (connection 
between two neurons) in the brain. There are usually some special 
nodes with their activations externally set, called the input nodes; 
there may be, in addition, some nodes that are distinguished as output 
nodes.

Each node's activation is based on the activations of the nodes 
that have connections directed at it, and the weights on those 
connections. A rule that updates the activations is typically called the 
update rule. Typically, all the activations would be updated 
simultaneously. Thus a neural network is a parallel model. Because 
of the lack of general availability of parallel computers, neural 
networks are typically simulated on conventional serial computers.

Learning in a neural network typically occurs by adjustment 
of the weights, via a learning rule. The network is typically trained 
to either complete an input pattern, classify an input pattern, or
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compute a function of its input. At the beginning of learning, with 
the weights all "wrong", the network performs badly at one of these 
tasks: at the end, with the weights adjusted, one hopes that it will 
perform well. Typically the update or learning rules do not change, 
only the weights. After learning, the weights are usually not 
changed further, unless something new must be learned.

Many network connection schemes, update rules, and learning 
rules have been invented: these are covered in gory detail in Chapter 
2.

Neural network models, like Al itself, date back to the 1950s. 
At the beginning of the 1980s, many researchers, discouraged at the 
speed of progress in traditional, symbolic Al, turned back to neural 
network models. They felt that this line of research had been unjustly 
hurt by the publication, in 1969, of Minsky and Papert’s book 
Perceptrons, which pointed up the limitations of a particular kind of 
neural model, the two-layer perceptron. In 1985, a special issue of 
Cognitive Science was devoted to the subject of "connectionism", 
which was a new name for the field of neural network modeling, and 
which emphasized the idea that it was the topology of the connections 
in a network that was critical to its behavior. In this book, I will use 
"neural network model", "connectionist model", and "connectionist 
network" interchangeably.

Another reason for the renewed popularity of connectionist 
models was the fact that parallel computers began to become 
available. Connectionist models are one important variety of parallel 
computational models.

In 1986, a two-volume set of books called Parallel Distributed 
Processing: Explorations in the Microstructure of Cognition was 
published which reported research done by a group of cognitive 
scientists at the University of California at San Diego, and led by 
David Rumelhart and Jay McClelland (1986b). The most important 
result in those volumes—although they contained many important 
ideas—was the report of the discovery of the error back-propagation 
algorithm for learning the weights in an associative network (see 
Chapter 2). Much of the connectionist literature since then has 
comprised studies of what can be done with networks that are trained 
using this algorithm.

Rumelhart, McClelland, and co-workers advocated a particular 
type of network model, a distributed model, in which a typical 
concept— such as a word— would be represented by a pattern of 
activation across a set of nodes. This is in contrast with local
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representation, in which a particular concept is represented by the 
activation of a single node. We discuss the relative advantages of 
local versus distributed representations in section 1.4.

1.2. The Statistical Nature of Connectionist Models
A critical fact about neural networks is that they are 

statistical associative models. A typical network model has a set 
of input patterns and a set of output patterns. The role of the 
network is to perform a function that associates each input pattern 
with an output pattern. A learning algorithm, such as back- 
propagation, uses the statistical properties of a set of input/output 
pairs— called the training set— to generalize, that is, generate 
outputs from novel inputs. Without the ability to generalize, neural 
network models would be like look-up tables, which are not very 
interesting. For a formal discussion of generalization in learning, see 
Valiant (1984).

It is important to recognize the difference between statistical 
and rule-based inference. Statistical inference allows for exceptions 
and randomness in the association between two variables, whereas 
rules are deterministic. In a neural network model, the history of the 
system—that is, what training it has seen—determines the system's 
response to a new stimulus. Often, rule-based systems are non- 
adaptive, that is, they do not respond to observed changes in the 
stimulus environment, although they can be made to be adaptive. 
Rule-based systems can be made to handle exceptions as well, at the 
expense of making the rules more complex.

Thus neural networks derive their inspiration from two 
distinct yet related fields—associationist psychology and 
neuroscience. Associationist psychology has a long history: 
behaviorism is one form of it, but the idea that human memory 
works associatively dates back at least to classical times. 
Neuroscience and associationist psychology have an uneasy alliance 
that comes from the simple observation that neurons synapse with 
one another, therefore the firing rates of such neurons are 
associated. If the brain is simply a web of such associations, perhaps 
the mind is as well.

As Touretzky (1988) points out, usually a connectionist 
system either classifies the input or performs some function of it. In 
either case the function computed tends to be a continuous one, with 
relatively similar outputs being assigned to similar inputs. There
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may be a certain number of discontinuities intrinsic to a 
classification task, since the outputs in such a task are a discrete set 
of symbols representing the sets in which the inputs are classified.

Some type of measurement of similarity between patterns is 
critical for a statistical process such as a neural network. In 
computing its output for a given input, a connectionist model 
computes some sort of correlation between its input and the set of 
stored weights associated with a given node in the layer above the 
input. Typically this correlation is a dot (scalar) product; if xi and 
wi are the ith components of the input and weight vectors 
respectively, then the dot product is given by

X  wix i 
i

Yet there are many methods of forming statistical correlations 
between patterns. A review may be found in Kohonen (1988); a 
summary of that review follows:

Probably the best known measure of the distance between two 
vectors x  and y is the Euclidean distance, given by

J Z  (Xi-y0 2 
i

This generalizes to the Minkowski metric, given by

( I ( x i - y i ) n ) 1/n
i

which, when n=l, is sometimes referred to as the "Manhattan" 
distance (because in order to get between two points in Manhattan 
(New York City) one must move along a grid). When n=2, it is the 
Euclidean distance.

If what matters is not the magnitude of the vectors that are 
being compared, but their relative orientation 0, this is given by

X  * V
COS j-j r\x\\y\

cosO=l implies x and y are parallel (and thus as similar as possible); 
cos6=0 implies x and y are orthogonal.
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In fuzzy logic (Zadeh 1973), in one version presented by 
Kohonen, two scalars' similarity is given by

e(x,y) = max( min(x,y ),min( 1 -x,l -y))

where x and y are drawn from the interval between 0 and 1 
inclusive, x and y are variables that represent the degree of truth of 
two propositions, and e represents the degree to which they are 
equivalent. These differences, when they are taken between vector 
components, can be combined using the Minkowski metric above 
with some value of n (most typically n-1  or 2). Kohonen points out 
that this method is simpler to compute than a dot product, since the 
maximum and minimum functions are simpler to compute than the 
product function, and that, in forming the distance, this method 
counts weak signal data more than the dot product does.

All of the similarity measures mentioned so far deal with real
valued input vectors. For discrete-valued vectors, one similarity 
metric is the Hamming distance. This is simply the number of 
vector components in which two vectors x and y differ. Each 
element of each vector being compared is drawn from a finite set of 
symbols. In the case of binary vectors, the Hamming distance is 
given by the sum of the exclusive-or function (xor) across all 
components:

X  xor(xi,yi) 
i

Although most of the computations carried out in 
connectionist models involve the dot product of weights with input 
(often then composed with a functional, such as a sigmoid function), 
it is helpful to keep in mind that this is only one of the many 
similarity functions that could be used.

1.3. Relevance of the Brain
Research in neural networks stems from the idea that 

simulating, on a computer, the way that the brain processes 
information may prove useful in understanding thought processes. 
Neural network research dates from the 1940s. In 1943, McCulloch 
and Pitts published their classic paper "A Logical Calculus of the 
Ideas Immanent in Nervous Activity" (1943). McCulloch and Pitts's 
neurons were simple logic gates, the and, or, and not gates familiar
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to logic designers. McCulloch and Pitts proved that a computer built 
out of these "formal neurons" was Turing-equivalent, that is, 
equivalent to the most powerful class of computing devices known 
(Turing machines).

As Cowan and Sharp (1988) and many others (for example, 
see Shepherd 1989) have pointed out, actual neurons are much more 
complex than simple logic gates, and "their complexities can be 
accurately simulated only by intricate computer chips". These 
complexities have been elucidated only in recent years, since 
McCulloch and Pitts's work. Most neuron models that have been 
developed for neural network research are less complex than actual 
neurons. Neural network researchers argue that since their models 
are Turing-equivalent, they can simulate any computation at all, so 
there is no need to use more complex neuron models.

The brain consists of approximately 10H -10l2 neurons 
connected in a complex fashion. Neural network and brain 
researchers believe that the way that the neurons are connected to 
one another is critical to understanding the behavior of the brain as 
an information-processing system.

1.4. Distributed vs. Local Connectionism
The brain, like the rest of the body, is built of unreliable 

components. Neurons can wither and die. How is it possible that the 
brain continues to function fairly reliably over a long period, 
despite this? This was a question that interested John von Neumann, 
a mathematician who was one of the founders of computer science 
(Von Neumann 1956). He devised a neural network that utilized 
redundant neurons, using a "voting" protocol. In such a net, a set of 
neurons "vote" on whether or not another neuron should fire. If a 
majority of the inputting neurons fire, i.e. vote "yes", then the 
outputting neuron will fire (and possibly input into some other 
neurons). Thus if an outputting neuron starts out with a strong 
majority, the failure of some of the neurons inputting to it to fire 
will not affect its outputting, and thus performance will not be 
degraded. Redundancy has been the cornerstone of much work in 
reliable systems. Randell and his co-workers (1978) review work in 
this area.

Much of the debate among connectionists concerns the degree 
to which information should be localized in a single neuron (Barlow 
1972), or distributed across many neurons. A distributed memory is
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the latter kind, one in which a symbol—for example, an ordinary 
word—is represented by a pattern of activation.

While studies of brain function have proved that different 
activities—for example, speech, vision, or motor control—are 
localized in various specialized parts of the brain, many people 
believe that single neurons do not represent high-level pieces of 
information. The argument goes as follows: if one had a neuron that 
represented, for example, one's grandmother, then there would be 
people running around who were perfectly normal except for their 
inability to recognize their grandmother (i.e. whose grandmother 
neurons had died). Since there are no such people (as far as we 
know), therefore there cannot be any grandmother neurons (or 
yellow Volkswagen neurons, etc.), or there must be many redundant 
copies of a grandmother neuron. Human memory appears to suffer 
from "uniform degradation"; instead of individual memories 
becoming lost, performance on recall of all memories becomes 
worse and worse (with age or injury).

Local representations are also subject to a combinatorial 
explosion, in which a node is needed for every concept. This is 
because there are an infinite number of concepts, because of the 
natural combinatorial nature of language, and each one would 
require an individual node. For example, in a local representation, 
one would have to have a "tall blond man" node, whereas in a 
distributed representation one would have nodes for "tall", "blond", 
and "man", all of which would be activated simultaneously to 
represent "tall blond man". These individual nodes are often 
referred to as microfeatures to emphasize the fact that individual 
concepts can be decomposed into them. Microfeatures are often 
chosen on the basis of a researcher's feeling that the chosen concepts 
are somehow basic to a complete semantics of the concepts being 
represented, but very few researchers have chosen their 
microfeatures in a principled way. For limits on how this might be 
done, see works on semantics such as those by Barwise & Perry 
(1983) and Jackendoff (1983).

One of the more active research centers, the University of 
Rochester, emphasizes the use of local representations in 
connectionist models (Feldman 1986). Feldman, Ballard, and their 
colleagues and students at Rochester have applied these types of 
models to problems in knowledge representation, vision, and 
language comprehension. For examples, see the reviews of the 
work of Shastri in Chapter 4, Sabbah in Chapter 6, and Fanty in
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Chapter 7. The main advantage of local representations is they are 
relatively easy to understand and implement. The main disadvantage 
is the combinatorial explosion in the needed number of nodes.

In distributed representations, information is represented 
redundantly, but a single neuron may participate in the 
representation of several pieces of information. This idea is not new 
in psychology: for instance, Pribram (1971) proposed a 
"holographic" theory of memory, in which every memory was 
stored as a hologram. A small piece of a hologram may be used to 
reconstruct the entire image (at lower resolution), thus, the 
hologram contains redundancy. In the connectionist formulation, a 
distributed memory is typically viewed as a pattern of activation 
over a set of interconnected nodes in a neural network.

The relationship between local and distributed representations 
is analogous to that between unary and higher radix number 
systems. In a unary system, the number of symbols needed to 
represent a set of n numbers is proportional to n, whereas in a 
binary or higher radix system it is proportional to logyn, where r is 
the radix. The radix of the system is, in a distributed model, 
equivalent to the number of states a given node can have. Normally 
there are two, activated or deactivated, although nodes may have 
anywhere from two to an infinite number of states.

One problem with a distributed memory is crosstalk. Consider 
three nodes A,B, and C, and three concepts 1,2, and 3. If concept 1 
is represented by AB (i.e., nodes A and B activated), concept 2 by 
BC, and concept 3 by AC, then if any two of the concepts are 
activated, the third one will be as well, even if it is not there. This is 
crosstalk; the concept erroneously evoked is called a ghost.

One particular technique for constructing a distributed 
memory is known as coarse-coding. Coarse-coding is best 
understood as a way to represent a digitized image. Suppose there 
are two layers of neuron units, each of which is a two-dimensional 
array, so that the input layer represents an ordinary digitized image 
array, stored in the activations in the units. Suppose one output unit 
is associated with each of a square array of units in the input, say a 
3x3 or a 4x4 array, then it responds when any of the units in that 
small array are active. The array of units that the output unit 
responds to is called its receptive field. Typically, in a coarse-coded 
memory, output units have overlapping receptive fields.

Figure 1.1 shows a coarse-coded memory with 16 input units 
(shown as white circles), 9 output units (shown as grey circles), and
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receptive fields of 4 units per output unit. The receptive fields 
overlap so that the left two units of one output unit's field compose 
the right two units of the receptive field of the output unit to the 
right of it, and similarly for the output units above and below each 
other. Coarse coding is a distributed memory technique because a 
single unit's activation in the input units corresponds to a pattern of 
activation in the output units. For instance, if unit (2,2) of the local 
input pattern is activated, then units (1,1), (1,2), (2,1), and (2,2) of 
the coarse-coded output units would be activated.

Coarse-coding is a useful method 
of reducing the number of units that is 
required to represent some stimulus.
However, since a coarse-coded image 
reduces resolution, local detail is often 
lost. Distributed models in general 
require less units than local models; the 
more distributed the model, the fewer 
units.

Rosenfeld and Touretzky (1988) 
review techniques for coarse-coded or Figure 1.1. A Coarse-coded 
distributed memory representation. They Symbol Memory, 
use the phrases coarse-coded memory and
distributed memory interchangeably. They define a coarse-coded 
symbol memory (CCSM) as: (1) a set of N  units with binary-valued 
activations, (2) a set of a symbols and (3) a mapping of each of the 
symbols onto a bit pattern in the units. That is, a symbol is—as in 
most definitions of distributed memory—represented by a pattern of 
activation across a set of binary units. Each unit has a receptive field 
consisting of all the symbols in each unit for which it is activated. A 
ghost is a pattern in the memory that corresponds to a symbol that 
was not intended to be stored; it is the result of crosstalk. The 
failure rate of a CCSM is the rate at which ghosts emerge.

They define Pghost as the probability that a ghost will 
emerge, given that the CCSM has stored a certain number of items 
k. They note that a local representation is one in which k=N=a and 
Pghost=0 , that is, one in which each symbol has one unit assigned to 
it. Aside from the terminology, there is no difference between a 
CCSM and a binary function on a finite set of symbols.

One CCSM that they explore is the random receptors model, 
in which each unit is assigned to each symbol with a probability s. 
They show that the probability of a ghost is minimized when
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s= l/(k+ l), where k is the number of items stored. They also show 
that, for this model, this implies that the number of symbols a  in the 
alphabet can be related to Pghost* the number of units N, and the 
number of symbols stored k (if k is large) by a function

a ( N ,k ,P g h o s t ) =  P g h o s t  eO-3 6 8 (W k )

They note that this implies that capacity (k) can be increased 
linearly by linearly increasing the number of units (N), because of 
the term N/k in the above formula. It also shows that the probability 
of representing a ghost symbol can be reduced by reducing the 
number of symbols to be represented, or increasing the number of 
units, which makes intuitive sense.

Rosenfeld and Touretzky go on to analyze the effects of 
dividing up a CCSM into two or more CCSMs. They conclude that, 
unless you have some information about which pairs of symbols will 
be stored at once, it does not pay to split the system.

They compare the coarse coding scheme used by Touretzky 
and Hinton in DUCS (see section 3.2 for a complete description) 
with the random receptors method. The DUCS memory uses 
randomness, but in a more structured way than purely random 
receptors. They note that the random receptors method gives a 
lower probability of getting a ghost for a given number of system 
units and patterns stored, but the DUCS system typically only needs 
slightly more units to achieve the same result. They conclude that 
DUCS needs more units than a random receptor model since there is 
more redundancy in representing a given symbol. In the random 
receptor model, the number of units in a receptive field of a unit is 
dependent on the number of symbols that are stored, in DUCS it is 
fixed. This leads to sub-optimal performance.

They consider another distributed representation, the 
wickelphone representation used by Rumelhart and McClelland 
(1986a) (see section 7.12) in their model of the learning of the past 
tense forms of English verbs, in which the phonemes of words are 
represented by the phoneme name and its left and right context 
phonemes (since a sound is different depending on its context). The 
name and context phonemes are each represented by a microfeature 
vector of 11 bits representing various phonetic features, such as 
voicing, place of articulation, etc. A wickelphone therefore requires 
33 bits of information to describe it. They represent the
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wickelphones as wickelfeatures, in which one wickelfeature node 
represents a conjunction of three phonemes. A single wickelfeature 
node always is compatible with several or many actual 
wickelphones; for instance, it could be compatible with t,d, and k. 
Their main point in reviewing the wickelphone representation in the 
context of coarse coding is to illustrate that microfeature-based 
distributed representations and coarse-coding are not necessarily 
incompatible, but can complement one another.

Designing a distributed memory is equivalent to assigning 
receptive fields to the units in the system. They note that a stochastic 
method for generating receptive fields can cause unacceptable 
variation in the size of the fields, and affect the performance of the 
system. They have developed a method for generating optimal fixed 
sized receptive fields, the bounded overlap method, but this requires 
an exponential search, which is too expensive in the typical case of a 
few thousand units (Rosenfeld and Touretzky 1988).

They suggest a practical method for designing a distributed 
memory whereby each unit in the CCSM has its receptive field set to 
a consecutive set of F symbols, chosen cyclically and repeatedly, 
from the symbols in the symbol set in some order. The receptive 
fields are then shuffled randomly for some time, by exchanging a 
symbol between the receptive fields of units x and y that is in the 
receptive field of y but not x for one that is in the receptive field of 
x  but not y. They note that the pattern size (the size of a pattern 
representing a symbol) is L=NF/a, where a is the number of 
symbols, and the expected overlap Oe  between two patterns

Oe  = L(F-l)/(a-l)

We want to minimize the degree to which the overlap C(i,j) 
between the patterns for the ith and jth  symbols differs from the 
expected overlap, as measured by the variance

V = j Z [ ( C ( i J ) - 0 E]
i*i

After shuffling the receptive fields, they are shuffled some more, 
but each shuffling step is taken only if it reduces the variance. The 
algorithm stops when the variance is reduced to an acceptable level.
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1.5. Distributed Models: A Critique
Oden (1988b) gives a useful discussion of distributed models. 

One of his main points is that a model that looks distributed is 
always local from another point of view. For instance, in the model 
of schemata presented by Rumelhart et al. (1986f), a bedroom is 
represented by a series of nodes representing the objects in it. The 
model is distributed with respect to the bedroom, but local with 
respect to the objects in it. Similarly, in the case of coarse-coding, 
when a stimulus is encoded in terms of the responses of detectors 
that have overlapping areas of sensitivity, the array of responses is 
distributed with respect to the stimuli, but is local with respect to the 
detectors.

Oden points out that distributivity is not a characteristic 
predominantly of connectionist models; even the ordinary binary 
encoding of a number is distributed, since each bit can participate in 
the representation of many numbers. Distributivity, according to 
Oden, is a question of degree and perspective.

Oden tackles the common claim of connectionists that the 
nodes in a network can be non-symbolic, that is, that they can have 
no semantic interpretation, especially in a distributed network. This 
claim is a resulting of misconstruing a complex, hard-to-make 
interpretation as no interpretation. Oden gives the rotation of a 
coordinate system as an example. A pair of coordinates that could be 
readily interpreted in terms of one system could not be as readily 
interpreted in terms of another, rotated, system. Yet all the original 
information is preserved.

To give another example: if I take a digitized picture of Lenin 
and run it through some invertible transformation so that the picture 
becomes unrecognizable, does this make the result non-symbolic of 
Lenin? I think not: all the information necessary to construct the 
picture of Lenin is still there (since the transformation is invertible).

The third property of connectionist models that Oden 
discusses is their continuousness. He notes that all models must deal 
with continuous data, since the real world is continuous, but models 
differ in the degree to which they transform these data to continuous 
or binary variables. Some connectionist models have neurons that 
fire "on" when their input exceeds a threshold, and "off’ otherwise. 
These are discrete models; the non-linear sigmoid response curve 
and the linear response curve of other connectionist models are 
continuous models (see section 2.3). Oden notes that connectionist



Neural Networks in Artificial Intelligence 27

models provide for "the use of best-fit pattern matching, which in 
turn allows for the kinds of categorization, content-addressability, 
and automatic generalization that (they) are known for." Traditional 
cognitive models make discrete classifications based on necessary 
criteria or cutoffs; they do not allow for there to be degrees of fit to 
a set of possible concepts, as there is in a connectionist model, where 
a concept node may be more or less activated, or in fuzzy set theory, 
in which an element may have a degree of membership in a set that 
is any value intermediate between 0 and 1. An example of how a 
connectionist model may closely correspond to a particular 
symbolic, cognitive approach—the fuzzy propositional approach—is 
given in the following section.

1.6. Connectionist Models and
the Fuzzy Propositional Approach
Oden (1988a) has worked out a relationship between his 

earlier work in symbolic cognitive science, in what he termed the 
fuzzy propositional approach, and connectionist models. In the fuzzy 
propositional model, each proposition A is assigned a truth value 
t(A) between 0 and 1. One form of this model uses a multiplicative 
law for conjunction: t(A and B)=t(A)*t(B).

The following rule is usedfor disjunction: t(A or 
B)=(l-t(A))*(l-t(B)) The result of amplifying a truth value t(very
A,) is given by t(A)v, where v is some constant. These formulas are 
borrowed from probability theory, although it is different to say 
that A is partly true than it is to say that A is has a certain 
probability of being true.

Starting with some 
experiments that Oden 
and Rueckl (1986) did on 
stim uli that vary
Continuously on two Figure 1.2. Stimuli similar to those used in 
dimensions, Oden derives experiments. Reprinted by permission, 
some response formulas.
The exact stimuli were "eat" and "lot" (see Figure 1.2)— the 
difference between them is based on a continuous variation of the 
height of the loop in the "e" or the "1" (in their hand-written 
versions) and the depth of the dip in the line that connects the "a" or 
the "o" with the "t". If t is the truth value of the first letter being "1"
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and d is the truth value of the second letter being "a”, this gives the 
formula

t("eat" rehtlve-to "lot") = (t(eJt)J(bt)) = (l-t)dJt(l-d)

It there is a possibility of, for instance, the loop in the "1" being very 
tall, or any of the other features being amplified in this way, we 
have

(l-t)wldw2
t("eat" relative-to "lot")=---------- -— ------- : ------------

(l-t)wldw2+tw3(l-d)w4

Oden notes that the typical semi-linear, sigmoid response 
function of a neuron (see section 2.3) can be approximated by 
f(x)= l/(l +e~x), where is the input to the neuron and /  is the output. 
To map his scheme on to a connectionist network, he postulates that 
there are nodes whose activation corresponds to "short", "tall", 
"deep", and "flat", where the first two of these refer to the loop of 
the e/1, and the second two correspond to the dip between the a/o and 
the t. Thus, "short" and "deep" would be positively connected to the 
"eat" node, and "tall" and "fat" would be negatively connected to the 
"eat" node. The "lot" node would have opposite connections. 
Numerically,

aeat=f(wias+w2ad-w3arw4af)

where as is the activation of the "short" node, etc. Plugging this into 
the formula for the semi-linear response function, we get

a = ___________ 1____________  (eas)wl(ead)w2
601 l+e-(wias+w2 ac[-w3 ar w4 af) (e^s)wl(ead)w2+(e< t̂)w3(e^f)w4

Beyond the fact that the activations are exponentiated, this is 
identical to the version given by the fuzzy propositional model. 
Under other conditions, however, Oden notes that the isomorphism 
between the two models does not hold. In any case, the two models 
are close.

Oden makes the case that a symbolic system, such as the fuzzy 
propositional model, can be used to understand connectionist
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systems, which otherwise would be collections of nodes that operate 
as if by magic. He argues that the symbolic and the neuronal levels 
are complementary, not in conflict. It is not sufficient to design a 
system that learns a task by adjustment of weights; one must be able 
to give a semantic interpretation of the system.

1.7. Philosophical Issues
Connectionism has stimulated vigorous discussion of its 

usefulness as a research strategy for cognitive science. To its 
detractors, it is a new form of associationism, and the debate on its 
merits simply a rehash of the late 1950s debate between behaviorists 
and cognitivists, which the cognitivists basically won, in that 
cognitivism became the prevailing school of thought. Of course, 
connectionism is explicitly representational, while behaviorism was 
anti-representational.

The best known philosophical arguments for connectionism, 
and against it, are, respectively, those of Smolensky (1988), and 
Fodor and Pylyshyn (1988). Smolensky was a contributor to the 
PDP books (Rumelhart et al. 1986b). Fodor and Pylyshyn are well 
known proponents of the symbol-manipulation approach to AI; for a 
sample of the earlier philosophical work, see Pylyshyn (1984) and 
Fodor (1981). The book edited by Graubard (1988) contains several 
articles concerned with the philosophical controversy around 
connectionism.

1.8. Smolensky's "Proper Treatment" of Connectionism
Smolensky (1988), in his controversial article "On the Proper

Treatment of Connectionism" attempts to characterize the limitations 
and advantages of the connectionist approach, and to reconcile it to 
the traditional approach to AI. He characterizes connectionism as 
the "sub-symbolic" approach, as opposed to traditional AI as 
embodied in the Physical Symbol System Hypothesis (PSSH) of 
Newell (1980). He interprets the PSSH as stating that the "sub
symbols" in the connectionist paradigm are constituents of the 
symbols used by traditional AI. The two paradigms also have 
different levels on which they operate; the symbolic approach uses 
what Smolensky calls the conceptual level, and the connectionist 
approach uses what is called the sub-conceptual level.

Smolensky says that natural language has provided the major 
theoretical focus of the symbolic paradigm. Cultural knowledge
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about specific domains is typically embodied in language, and 
linguistic symbol lists, in the form of rules, are used in conjunction 
with some type of logic to create simulations of human action. The 
machine acts as a rule interpreter, which is a model of conscious 
rule application. In addition to this rule interpreter, Smolensky 
posits the existence of a second, unconscious processor, which acts 
on knowledge drawn from individual experience to perform tasks 
such as intuitive expert game playing, motor coordination, that is, 
almost all skilled action. He calls this processor the intuitive 
processor.

He considers the following possible assertions, all of which he 
will reject: that the intuitive processor deals with "linguistically 
formalized rules" which are applied sequentially, that the program 
of the intuitive processor is itself symbolic, and that these programs 
are similar to those of the conscious rule interpreter. He rejects 
these assertions, as most connectionists do, because—as yet—models 
of human performance that are based on them lead to too much 
brittleness and inflexibility, because the amounts of knowledge that 
would have to be embodied to make them workable is too large, and 
because they lead to few insights about how the brain works. 
(Fodor and Pylyshyn argue that there is no particular reason why 
they should lead to such insights; see the next section.)

After rejecting a symbolic approach to the intuitive processor 
Smolensky considers the opposite extreme; that the intuitive 
processor uses the same architecture as the brain does. The trouble 
with this hypothesis is that we don't know what the brain's 
architecture is. Instead of this hypothesis, Smolensky advances the 
hypothesis that the intuitive processor has a connectionist 
architecture. The version of connectionism that Smolensky 
advocates is what he calls the "connectionist dynamical system 
hypothesis". This hypothesis views a connectionist system as a 
parallel computer containing many processors, with each of which is 
associated a number (or possibly, a set of numbers). Thus the state 
of the system can be described by a vector, a state vector of 
activations. The system has an equation describing how the state 
vector evolves in time, which Smolensky calls the activation 
evolution equation. The state of the connections in the system (that 
is, the weights on them), can also be described by an equation, which 
Smolensky calls the connection evolution equation. Thus a 
connectionist system is, for Smolensky, a dynamical system such as
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that found in physics. Typically these are governed by differential 
equations.

Next, Smolensky considers the meaning of the activations in a 
connectionist system. Each of the activations does not constitute an 
entire symbol; rather a symbol (e.g., word) is represented as a 
distributed pattern of activation across the system, each unit is sub- 
symbolic and participates in the pattern for many symbols. He takes 
this to a (possibly new) extreme, by hypothesizing that the sub- 
symbolic behavior of a connectionist system is not explicable in 
terms of the conceptual level. This rejects the idea (see Fodor and 
Pylyshyn, next section) that connectionist models are 
implementations of symbolic processes. Smolensky believes that if 
connectionist modeling is an implementation theory, the 
connectionist research program is defeated. The mere fact that 
connectionist networks and Von Neumann machines (conventional 
serial computers) can simulate one another does not reduce 
connectionism to an implementation theory, because a Von Neumann 
simulation of a connectionist machine does not manipulate the kinds 
of linguistic-level symbols used in a typical rule-based system.

Smolensky reviews three methodologies for choosing features 
at the sub-conceptual level. This first is the borrowing of these 
features from previous symbolic models, such as was done in 
Rumelhart and McClelland's (1986a) model of the formation of the 
past tense, where phonetic features were used (see section 7.12) The 
second is the learning of the relevant features in hidden units using 
learning procedures such as back-propagation. The third method is 
to choose features in such a way so as to tune a system so that it 
matches human performance.

One technique that does this, according to Smolensky, is 
multi-dimensional scaling (Shepard 1962), which looks at the raw 
corpus of data and extracts vectors which can be used to represent 
the stimuli. Smolensky points out that, if we want to look to the, 
brain for guidelines on how to derive features at the sub-conceptual 
level, we lack information. We have more information in vision 
than in any other domain—in a domain such as language processing 
the information given is virtually nil. Thus Smolensky points out 
(the protestations of some other connectionists to the contrary), that 
the semantics of the features at the sub-conceptual level are, at this 
point, more closely related to the semantics of concepts at the 
conceptual level than they are to the activations of neurons in the 
brain. Moreover, the actual activity of the brain is much more
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complex than is reflected in most current connectionist models. Yet, 
clearly, because of the rough correspondence between connectionist 
models' architecture and the brain, connectionist models are likely 
to operate under similar principles to the brain.

Smolensky concludes that connectionist models are at a level 
intermediate between that of symbolic models and the brain, and 
should not be seen as biological models themselves. He argues that a 
reduction will someday have to be made from successful 
connectionist models to neural circuits. The expression of neural 
circuits directly in models is made difficult by insufficient 
knowledge of the dynamic behavior of the brain, according to 
Smolensky. The degree to which a connectionist model can be 
approximated by a symbolic model depends on whether or not the 
process being modeled is one of conscious rule application or of 
intuition. Conscious rule application processes modeled on the 
connectionist level can be described "with reasonable precision" on 
the conceptual level, but intuitive processes can be described only 
roughly on the conceptual level. This is because the symbolic level 
relies strongly on its own implementation language for its 
functioning.

On the other hand, connectionist models can serve as an 
implementation language for conventional symbolic processes. 
However, the details of how this is done are not completely 
specified, although Touretzky and Hinton (1985) (see also Touretzky 
1987) have done valuable work in this area. Smolensky divides 
knowledge that is useful in interpreting stimuli into two sets: P- 
knowledge (parallel knowledge) and S-knowledge (sequential 
knowledge). P-knowledge can be used in parallel; e.g., a listener 
attempting to understand a sentence can simultaneously use syntactic, 
phonetic, morphological and semantic knowledge. On the other 
hand, S-knowledge cannot be used in parallel; a player of a game has 
to execute a single rule before s/he can contemplate the execution of 
a second rule. According to Smolensky, P-knowledge is much more 
context dependent than S-knowledge, because it is necessary to know 
which aspects of the P-knowledge can operate in conjunction with 
one another.

Next, Smolensky attempts to characterize what it is about a 
model that makes it cognitive, and how connectionist models can be 
cognitive. He defines a cognitive system as one that maintains a 
large set of goal conditions under a variety of environmental 
conditions. A thermostat is not cognitive because it does not
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maintain a large set of environmental condition^. Thus complexity 
is, for Smolensky, the acid test as to whether a model is cognitive. 
One important task that cognitive models undertake is what 
Smolensky calls the "prediction-goal", that is, to predict missing 
features of the environment from the features that are present in the 
stimuli. Closely related to this goal is the "prediction-from- 
examples" goal, that is, to use previous examples to continuously 
improve performance on the prediction problem.

Smolensky answers the argument of Fodor and Pylyshyn 
(1988) (see the next section) that connectionist models are limited in 
their usefulness, since mental states have constituent structure, like 
that represented in a parse tree, and connectionist models don't 
Clearly, this applies to localist connectionist models, which are 
subject to combinatorial explosion in the number of nodes, since 
there must be a node for every combination of concepts (e.g., the- 
tall-blond-man-with-one-black-shoe node), but Smolensky, who 
advocates distributed representations, thinks that they are less 
vulnerable to this kind of criticism. He considers the idea of 
Pylyshyn (1984) that in a distributed connectionist system the 
representation of "coffee" is equal to the representation of "cup with 
coffee" minus the representation of "cup". If the representation for 
"cup with coffee" consists of units representing features like "solid 
container", "handle", "brown liquid", "curved liquid", etc., then 
when we remove all of the features of "cup" from this 
representation, we are left with a representation of coffee, but in the 
context of cup, that is, we have a representation of coffee that has 
the coffee in the shape that is contained by the cup. Other 
representations of coffee could be made in other contexts; for 
Smolensky, there is no context-free representation of coffee.

The difference between local symbolic representations of a 
word and distributed connectionist representations is that, with the 
former type of representations, the context is established by the 
connections that it makes with other local symbols (as in a semantic 
network); with the latter type, the context is contained in the pattern 
of activation itself. This disturbs people who believe in context-free 
symbols.

Smolensky argues that connectionist models should be 
intrinsically continuous, that is, have activations that are real-valued 
rather than discrete, in order to escape from the brittleness and 
inflexibility of conventional symbolic models. This allows for the



34 Issues in Neural Network Modeling

integration of multiple constraints with different weight, which all- 
or-none rule-based systems cannot give you.

Smolensky believes that even the many connectionist models 
which use binary data in their computations need not be 
fundamentally discrete, but can all be mapped onto models that use 
real-valued variables. He argues, therefore, that little is gained by 
the use of discrete models, and their common use is based on the fact 
that digital computers are basically discrete, and so researchers have 
a tendency to think in discrete terms. But the brain is a highly 
parallel analog computer, which deals with real values, and analog 
computers can be built that embody connectionist models: for 
example, Smolensky cites Anderson (1986b) and Cohen (1986).

Smolensky reformulates the idea that multiple "soft" 
constraints can simultaneously contribute to a solution to a problem, 
such as mapping an input to its correct output, in terms of what he 
calls the "Best Fit Principle". This principle says that the system as 
a whole arrives at a solution which is statistically the "best fit" to the 
input, as specified by the various constraints known to the system. 
This is expressed mathematically in terms of the harmony function
H, which is maximized by the machine. Harmony theory 
(Smolensky 1986) gives the theoretical underpinnings of the 
harmony function and the dynamic behavior of networks with 
respect to it.

Smolensky gives an example of how a network can exhibit 
behavior normally thought of as rule-governed: his system that does 
qualitative physics. In this system, the knowledge of Ohm's law is 
embodied in the configuration of parts of the system representing 
current, voltage, and resistance. Each of these computes its value in 
parallel, with hundreds of microdecisions (activation changes). 
Macrodecisions are the result of many microdecisions. If a system 
changes, as the result of receiving input, to a state in which Ohm's 
law is satisfied, this is a macrodecision, even though underlying 
behavior is following Ohm's law as such. The relationship is like 
that between quantum mechanics and Newtonian mechanics; 
examined at a gross level a physical system seems Newtonian, but 
underneath it is really obeying quantum mechanics.

Harmony theory is illustrated by the work on schemata of 
Rumelhart and his co-workers (1986f) (see section 4.2). This model 
simulates the look-up of schemata on the basis of some triggering 
information. Basically, what it does is perform a search in harmony 
space. Although no schemata are explicitly stored—just correlations



Neural Networks in Artificial Intelligence 35

between rooms and objects—the schemata are emergent phenomena. 
When primed on some of a room's contents—say an oven and a 
cabinet—the system performs a search in harmony space, which 
leads to a peak which corresponds to the complete set of the room's 
descriptors. Yet the schemata are not directly present; they are 
higher-level descriptors of rooms than are explicitly represented.

1.9. Connectionism: A New Form of Associationism?
Fodor and Pylyshyn (1988) advance a detailed critique of 

connectionism, and a defense of the classical view (as they term it) 
of cognition as rule-governed manipulation of symbols, as in LISP- 
based AI or production systems. Basically, they view connectionism 
as a more sophisticated form of associationism, masquerading in 
new clothes. Associationism, in one of its forms, behaviorism, 
reigned as the supreme psychological theory through the 1950s, 
until it was displaced by classical cognitivism. For a history of 
cognitivism and its victory over behaviorism, see Gardner (1985). 
Fodor and Pylyshyn feel that many of the same arguments used 
against the associationism of the 1950s—one of the most famous of 
which was Chomsky's review of Skinner's Verbal Behavior 
(Chomsky 1959)—can be used against the associationism of the 
1980s, connectionism.

This is not to say that connectionism and behaviorism can be 
equated; connectionism, for one thing, is representational, believing 
that structures in the brain and mind represent objects and states of 
affairs in the world. Behaviorism (at least in the forms advanced by 
Skinner in his famous arguments against mentalism, which is what 
he called theories that use mental representations) is not 
representational, it is what Fodor and Pylyshyn call "eliminativist". 
This means that behaviorism does not think representations are 
important, but rather that behavior is, and, in fact, all talk about 
representations is unscientific. Fodor and Pylyshyn think that all the 
distinctions made in the connectionist literature between symbolic 
and sub-symbolic representations miss the main point: that all nodes 
in a connectionist network are symbolic. (A representation is the 
same thing as a symbol, in their opinion.) A single node is a 
symbol; so is a pattern of activation across nodes, much as a bit is a 
symbol (if it is causally attached to something in the world), and so 
is a bit vector.
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Connectionist representations are typically collections of 
activated nodes representing microfeatures (or rather, features, 
since what is typically used in the connectionist literature as a 
"microfeature" is something like "human", which is hardly an 
elementary concept). Fodor and Pylyshyn’s main objection to this 
form of representation is that it is unstructured; that is, it exhibits 
little of the compositionality of representation that classical 
representations exhibit. For instance, they posit that if the sentence 
"John loves Mary" is represented by three activated nodes (+john- 
subject +loves +mary-object), and we receive the additional 
information that "Bill hates Sally", so that we now have the vector 
(+john-subject +bill-subject +loves +hates +mary-object +sally- 
object); we now have crosstalk producing the additional sentences 
"John loves Sally", and "Bill hates Mary", "John hates Mary", "Bill 
loves Mary", "John hates Sally" and "Bill loves Sally". One way to 
avoid this is to have one node representing the entire complex 
concept of each sentence; the problem is there are so many possible 
sentences that no physically realizable brain could possibly contain 
enough nodes. The other way would be to allow the representations 
to have an internal tree-like structure such as {((John subject) loves 
(Mary object)) ((Bill subject) hates (Sally object))}. The problem 
with doing this, according to Fodor and Pylyshyn, is that no one, to 
their knowledge, has shown how to do this in a connectionist 
architecture. Touretzky (1989a) discusses issues involved in doing 
compositional semantics in connectionist networks, with reference to 
the problem of attaching prepositional phrases to noun phrases in 
sentences.

The key to this problem is that each link between nodes in a 
neural network represents a causal relationship between the nodes. 
Semantic networks, which can be more general than neural 
networks, allow for labeled links; the links can signify "causes", "is 
contained in", "precedes", etc. A connectionist network that Fodor 
and Pylyshyn suggest that draws inferences from a node standing for 
both A&B to ones standing for A and B is shown in Figure 1.3. 
Although the nodes are labelled to make it clear what they signify, 
these labels are not part of the connectionist representation. Fodor 
and Pylyshyn point out that the difference between this network and 
the classical implementation of this inference is that, in the classical 
case, the symbol string "A&B" contains as a part the strings A and
B, whereas this is clearly not true of the top node in the diagram.
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The causality shown in Figure 1.3 is insufficient to account for the 
compositionality, at least in this simple form.

Fodor and Pylyshyn point 
out, additionally, that connectionist 
models learn that concepts are 
statistically related. So, for 
instance, a connectionist model 
learns that A follows from A&B 
because the two statements are 
statistically related in the 
environment. It does not observe 
the structure of A&B in order to 
infer A, which is obviously one of 
the salient features of A&B.

Two basic properties of 
language augur well for the 
classical theory and badly for connectionist theory, according to 
Fodor and Pylyshyn. These are two well-known properties of 
language, its productivity and its systematicity. Any natural 
language consists of, for all practical purposes, an infinite number 
of well-formed sentences; this is referred to as the language's 
productivity. They quote a remark of Rumelhart and McClelland 
(1986e) in which they say that recursive center-embedded 
sentences—such as "The dog the man walked barked"—are hard to 
process, and that this is evidence that recursive capabilities are not 
central to cognitive capability. Fodor and Pylyshyn dispute this 
point, citing examples in which recursive embeddings are both easily 
understood and natural. In order to handle recursive embeddings, 
you need a classical (Von Neumann machine) architecture—one 
might presume—or a connectionist implementation thereof. So if 
you think that recursive productive features are critical to language, 
one might be tempted to choose a classical theory, according to 
Fodor and Pylyshyn.

Many sentences of the same structure occur in any given 
language, such as "the tree is in the park" and "the man is in the 
office"; this is the systematicity of language. This is what has caused 
linguists to posit the existence of syntactic categories. These 
categories necessitate the creation of linguistic structures that go 
beyond the simple lists of features that connectionist structures 
imply.

Figure 1.3. A connectionist network 
that represents the assertion that 
A&B implies A and B individually. 
From Fodor and Pylyshyn (1988). 
Reprinted by permission.
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Fodor and Pylyshyn take some time to consider some of the 
issues that have made connectionism so appealing to so many in 
cognitive science. First of all, the issue of parallelism: the idea is 
often advanced that since the brain has many neurons active at once, 
and no apparent central control, any plausible cognitive architecture 
would have to be "massively" parallel. Of course, on the lowest 
level, a standard Von Neumann computer is highly parallel, since 
electrical signals are active throughout both CPU and memory, but 
on a higher level of abstraction it is not parallel. Fodor and 
Pylyshyn point out that not only connectionist models that are 
parallel; classical symbolic programming languages can be parallel, 
for instance Hewett's (1977) ACTORS and Hillis's (1985) parallel 
version of LISP for his Connection Machine.

Designing algorithms for networks of traditional processors 
and shared-memory multiprocessors has become a fertile area of 
computer science research. Fodor and Pylyshyn point out that not 
only connectionist representations can be distributed. A traditional 
memory register can be distributed; all that is necessary is for it to 
divide its contents and spread them out across the machine’s 
memory. If it is desired, a transformation like a Fourier transform 
can be applied to the data so that, if part of the transform is lost 
(after it is split into chunks and distributed across the memory), the 
original signal can still be constructed, albeit with a loss of quality 
(the sort of "uniform degradation" that connectionists often talk 
about). They point out that an array can be functionally local, but 
distributed across the entire machine (using a hash table, for 
instance); representations are damage-resistant unless they are 
physically localized in memory and non-redundant.

Another point about connectionist models that is often raised 
is their ability to deal with representations and stimuli that are 
continuous rather than all-or-none. Fodor and Pylyshyn point out 
that there are lots of classical models that use continuous variables; 
for instance the use of Bayesian probabilistic inference techniques in 
expert systems or systems that use fuzzy logic (Zadeh 1973). 
Statistical properties of stimuli can emerge from the interaction of 
many smaller deterministic processes. (For instance, to over
simplify, the classification of a bird can emerge from a set of 
features, some of which are necessary; the classification process may 
depend on how many non-necessary features are present, their 
strengths, or a function thereof.)
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It is often maintained that connectionist architectures 
implicitly model rule-governed behavior whereas classical 
architectures make the rules explicit (and presumably implicit rules 
are better). Fodor and Pylyshyn claim that classical architectures 
can be rule implicit, when functions are wired in to the machine. 
Connectionist architectures can be rule explicit, as well,- but only by 
implementing a classical recursive machine. They add that if 
explicit rule learning turns out to be an important part of 
psychological theory, then connectionist systems are in trouble.

A major argument that is advanced for connectionist 
architectures is that they are biologically plausible, that is, that they 
are consistent with known facts about the brain. Fodor and Pylyshyn 
briefly summarize these facts as follows: connection patterns are 
important to how the brain processes information; memory is 
distributed, not localized; neurons work with synaptic thresholds; a 
neuron is more likely to fire, given a certain amount of input at its 
synapse, if it has recently fired. Fodor and Pylyshyn claim that 
none of these facts strongly constrain what type of architecture the 
mind must have. Low-level structure—and this is a point that Fodor 
has emphasized in many of his books—does not necessarily reflect 
high-level structure; the theory of atoms, doesn't look anything like 
biology, for instance. There is no reason that the brain could not 
implement a recursive classical architecture. Moreover, Fodor and 
Pylyshyn lament that the naive implementation of these "brain-like" 
models has created a revival of associationist psychology.

Fodor and Pylyshyn do not want to dismiss connectionism 
totally, they just want to reduce it to the level of a theory of how 
specific psychological algorithms are implemented. Such 
"properties" of computers such as the idea that their memory is 
permanent, that they use exhaustive search, that they are logical and 
don't make mistakes, are not properties of an algorithm but of its 
underlying implementation in a digital computer; algorithms can be 
devised that "forget", that perform faulty reasoning, make errors in 
retrieval, etc.; basically any process that can be theorized about can 
be embodied in a conventional computer (this is the Church-Turing 
thesis, the widely accepted statement that Turing machines are 
universal, that is, that they can compute anything we can conceive of 
computing).

According to David Marr (1978), every process can be 
understood on two levels: the level of formal specification (theory), 
and the level of implementation. The problem that Fodor and
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Pylyshyn have with connectionist models is that their authors offer 
them as theories of cognition, not as implementations of higher-level 
formal processes. I would add, in defense of connectionists, that 
studying lower-level neuronal implementations may produce 
interesting new insights about higher-level processes, much as 
physics has informed theory formation in chemistry. Of course, 
there is no reason that neural theories need constrain psychological 
theories much at all, if the brain turns out to be a general purpose 
machine, like a Von Neumann computer.

Fodor and Pylyshyn consider four possible routes that 
connectionism could take from here, which are: (1) to maintain its 
present course; (2) to admit structured mental representations but 
retain an associationist account of their processing; (3) to reduce 
connectionism (and neuroscience) to the status of an implementation 
theory; or (4) to accept connectionist accounts of a certain subject of 
cognitive processes—notably the forming of statistical inferences 
from sets of stimuli—but do not accept connectionist accounts of 
such phenomena as linguistic productivity and regularity. It is hard 
to say what route connectionism will take; much depends on the 
success of the current research program.



2
Neural Network Methods 

for Learning and 
Relaxation

2.1. Introduction
Most work in neural networks involves learning. The goal of 

most neural network models is to learn relationships between 
stimuli. There are at least three ways that learning models can be 
classified. The first way concerns the nature of what is learned. A 
learning model can be a hetero-associator or an auto-associator. A  
hetero-associator is a network that computes a function between a set 
of inputs and a set of outputs. An auto-associator is a network that 
completes an incomplete input pattern. These two types of models 
are not different in principle, because a hetero-associator can always 
be reduced to an auto-associator by concatenating an input pattern 
and its associated output pattern, to make an input pattern of the 
auto-associator. Thus the performance of the hetero-associator can 
be then achieved in the auto-associator, by simply presenting, as the 
partial input of the auto-associator, the input pattern for the hetero- 
associator, and having the machine complete the pattern to produce 
what was the output pattern of the hetero-associator.

Auto-associative memory is extremely useful for the 
organism, and it is the way that the human memory system seems to 
work. Everyone has the almost constant experience of having a 
memory evoked by a particular cue that formed part of the 
memory: for instance, seeing a hat similar to one one's father used 
to wear reminds you of him wearing that hat. Content-addressable 
memories are also useful for database applications, because one 
typically wants to look up some record in a database based on some 
part of it (which is called the key.) Traditional approaches have 
involved building indices on each item of a record that one wants to
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look for. Organizing your memory in such a way so that content- 
addressability is an automatic feature would be desirable; it seems 
that this is what the brain has done.

The second way that learning models can be classified applies 
only to hetero-associators. These can be classified based on what 
they compute. Typically they compute either a general function of 
their input, in which there are about as many outputs as inputs, or a 
classification, where a large set of input patterns is mapped onto a 
relatively small set of output patterns, which represent sets into 
which the input patterns are classified.

Yet another way that learning models can be classified is in 
terms of the amount of guidance that the learning process receives 
from an outside agent, typically referred to as the teacher. 
Unsupervised learning occurs without a teacher; such a learning 
algorithm— the various kinds of competitive learning discussed in 
sections 2.15 through 2.18 are examples—that learns to classify the 
input into sets without being told anything. It does this clustering 
solely on the basis of the intrinsic statistical properties of the set of 
inputs.

Supervised learning adjusts weights on the basis of the 
difference between the values of output units, given an input pattern, 
and the desired pattern, given by the teacher. Error back- 
propagation (see section 2.12) is a supervised learning procedure.

The third type of learning has a long history in psychology: 
reinforcement learning. This is a type of supervised learning in 
which very little information is given the algorithm; typically one 
bit, which signifies if the output that the network provided to the 
given stimulus is good or bad. Many people feel this type of learning 
(which must of necessity proceed more slowly than supervised 
learning, since less information is given) is more psychologically 
valid, since people are not normally provided with a complete 
example of the desired behavior, especially in situations in which 
they are not explicitly taught (such as in child language learning).

While most work in connectionism is limited to learning of 
weights, many other things can also be learned, such as the topology 
of the network, the activation functions, even the learning rules 
themselves. Several authors have explored the possible of learning 
where in a net to place nodes and connections (see, for example, Ash 
1989, Dieterich 1988, Honavar & Uhr 1989b, Honavar & Uhr 
1989a).
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Relaxation is the process whereby the unit activations (not the 
weights) change over time until they evolve to a state in which 
activations are no longer changing, and thus the network can be said 
to have "relaxed", i.e. fallen into a state of little activity. Relaxation 
differs from learning in that only activations change; in learning, the 
weights change. Some network paradigms, notably feed-forward 
networks, which will be discussed later on in this chapter, require 
only one update per unit in order to reach their final state. Other 
types of networks, such as the Boltzmann machine (also discussed 
later in this chapter), require many updates, and thus undergo 
relaxation. Relaxation is especially applicable to constraint 
satisfaction problems such as vertex-labeling in line drawings (Waltz 
1975) and line and edge detection and enhancement (Zucker, 
Hummel & Rosenfeld 1977). Mackworth (1977) supplied a useful 
discussion of methods for the satisfaction of multiple constraints. For 
more recent discussions of relaxation, see Hummel & Zucker (1983) 
and Geman & Geman (1984).

The following sections give an overview of the main neural 
network designs and learning methods. We start with a review of 
the different types of model neurons devised by Feldman and Ballard 
(1982), which can be used to construct connectionist models. We 
then discuss two of the earliest devices, the Adeline and the 
Perceptron, which are relatively simple and limited in their 
computational power. In both of these models the error—difference 
between the desired and actual output—is used as a corrective to 
bring the performance of the model closer to that desired. Thus 
these two models employ supervised learning.

We then proceed to another simple associative network that 
uses Hebbian learning, that of Anderson. This is a network that uses 
matrix multiplication to compute associations between input and 
output vectors, and which uses as correctives to its matrix values 
correlations (products) of single components of these vectors. Thus, 
following Hebb (1949) connections between components that are 
simultaneously active are strengthened. This is a simple form of 
associative learning.

We then move on to another type of associative learning, that 
of Kohonen (1988). In the auto-associative version of Kohonen's 
work, he views an input vector as a corrupted version of its true 
value. He uses a mathematical technique, the Gram-Schmidt process, 
to compute the stored vector that is closest to the noisy input.
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These first four models are linear associators, since, in each, 
their output is a linear combination of their input. The remainder of 
the models discussed are non-linear, i.e. their outputs are non-linear 
functions of their inputs. A non-linear model can compute a much 
greater variety of functions than a linear model, although it is 
surprising how much linear models can handle.

The first non-linear model we discuss is that of Hopfield. In 
this model, neurons reset themselves randomly and asynchronously if 
their weighted inputs exceed a threshold. Hopfield's network is auto- 
associative. By setting the weights in his network in a particular 
fashion, Hopfield is able to show that the state of his network always 
converges to a stable state. Any such network, Hopfield shows, has a 
set of stable limit points, which can be used to store memories. Thus 
the network functions as an auto-associator, because each input—that 
is, initial state of the network—leads to a stable state that 
corresponds to a stored memory. Moreover, unlike a linear 
associator, the stored patterns need not form a linearly independent 
set.

We then discuss the more complex neuron model offered by 
Hopfield and Tank, in which a neuron's behavior is modeled by a 
differential equation. We discuss the application of this neuron 
model to problems in optimization, in particular, the traveling 
salesman problem.

Hopfield used his initial network to store memories that 
correspond to local minima in a function that, borrowing from 
thermodynamics, he defines as the energy function of the network. 
If the goal of the model is not to store a set of memories, but to find 
a global minimum in the energy function that corresponds to an 
optimal solution of some constraint-satisfaction problem, then an 
extension of the Hopfield network, called the Boltzmann machine, is 
used. The Boltzmann machine is basically a stochastic version of the 
Hopfield network. The state of a given node in the network is based 
both on how much input it is receiving as well as a parameter called 
the temperature. The higher the temperature, the more randomness 
there is in the system. This type of network lends itself well to 
finding global minima. We also discuss a learning rule to make a 
Boltzmann machine reflect the state of the environment.

Next, in our discussion of network paradigms, we turn to the 
best-known neural network algorithm, the error back-propagation 
algorithm. This is an extension of the Perceptron to systems with 
one or more layers of hidden units between the input and the output.
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In this algorithm, the difference between the desired output and the 
actual output is used to adjust the connections first between the 
output layer and the hidden layer right below it. This error is then 
propagated backward in the network to layers below the top hidden 
layer and ultimately used to adjust connections between the input 
units and units above them. Rumelhart and his co-workers show that 
this algorithm converges to a local minimum in the error—that is, 
in the difference between the desired and actual outputs.

We discuss a variety of problems to which Rumelhart and his 
co-workers applied the back-propagation algorithm. These include 
computing the exclusive-or function, which the two-layer Perceptron 
was unable to handle.

We then turn to a variety of unsupervised learning methods. 
The first three examples we consider are versions of competitive 
learning, in which various digits or sets of units compete to 
recognize features in the input. These algorithms resemble 
Darwinian natural selection. We then consider a class of algorithms 
that, while not explicitly neural network algorithms, also take their 
inspiration from evolution: genetic algorithms. These are 
algorithms that model populations of organisms as populations of bit 
strings, in which each bit string is itself a solution to a problem. 
Both competitive learning and genetic algorithms "evolve" solutions 
to problems.

The final type of algorithms that we consider are 
reinforcement algorithms. The three main ones that we discuss all 
were developed at the University of Massachusetts, in Andrew 
Barto's group. The first of these algorithms is called the associative 
reward/penalty (Ar.p) algorithm, which is used to classify a set of 
inputs. The system learns the classification of inputs based on a 
reinforcement signal. We then discuss the work of Sutton on what he 
calls temporal difference methods, which are useful in predicting 
events that are in time series.

We then discuss the work of Anderson, one of Barto's 
students. Anderson applied both back-propagation, and the AR.p 
algorithm, to a set of problems. He also adapted the work of Sutton 
to use in the problem of learning heuristics for problem solving for 
problems normally associated with heuristic search. This type of 
problem solving has not been attacked by many other researchers 
using the connectionist paradigm.

Chapter two concludes with discussions of various extensions 
of the error back-propagation algorithm, of attempts that have been
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made to model sequential phenomena in neural networks, of a 
method for compressing information using back-propagation, and of 
an attempt to embody recursive structures in a neural network.

2.2. Types of Model Neurons
Feldman and Ballard (1982) reviewed a variety of different 

kinds of model neurons. The simplest kind is the p-unit. The output 
v of the /7-unit is proportional to its potential (activation) p, and p is 
adjusted based on its weighted total input:

P-P+fiE Wkik

where p ' is p's value after adjustment, the wk and ik are the weights 
and the inputs, respectively, on the input lines entering the unit, and 
P is the rate of change. If the potential is less than a threshold 9, 
then the unit's output is zero, otherwise it is simply the potential p, 
rounded off. Feldman and Ballard limited the number of output 
values to the integers from 0 to 9; this is an attempt to model the 
limited information transmission capacity of the individual neuron 
in a single firing. P -units were used in the Perceptron and the 
Adeline, which were early learning models, described in section 2.4.

A more complex unit they devised is the max-of-sum unit. 
For example, if we have a series of inputs ij, i2, i'7 such that ij 
and *2 are connected to one input site, i3 and i4 are connected to a 
second site, and z'5 , z<5 and 17 are connected to a third site, then the 
potential of a max-of-sum unit is

p '= p + p M a x ( i ] + i 2 - ( p , i 3 + i 4 - < P , i s + i 6 + b - ( p )

where q> is a noise threshold. Of course, units can be connected in 
whatever combinations are desired. This rule is the continuous 
analog of a disjunction of conjunctions, which is disjunctive normal 
form, a standard form for expressing logical expressions. Since 
disjunctive normal form can express any assertion in propositional 
logic, a network of max-of-sum units can compute arbitrarily 
complex logical functions of their input.

Another kind of unit that Feldman and Ballard discuss is the 
4-unit, which is a discrete unit. Every binary <y-unit has two states, 
firing and null. If a unit has n inputs, then its behavior is described 
by a table with rows corresponding to states of the input units; the
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last item in each row is the output, given the input state in that row. 
These units can be built out of standard digital logic; ^r-units are at 
the boundary between digital logic and neural networks. One can 
also have 3-valued or w-valued <gr-units.

Feldman and Ballard have also devised a unit that is a hybrid 
of p and q, called, naturally enough, the p-and-q-unit. One way to 
construct such a unit is to have it respond like a p -u n i t— 
continuously—while it is in one of two states, which they refer to as 
the normal state. When it is in the other state, the recover state, the 
unit ignores input. This unit is intended to model the behavior of real 
neurons, which need some time to recover between firings. The way 
this is implemented is to negate the potential when it exceeds some 
threshold, and put the unit into the recover state, for some number 
of updates, after which it goes back into the normal state and its 
potential starts to respond to input.

The general definition of p-md-q units augments the p and v 
of p -units by a set of states {q}. p, q, and v are updated by three 
functions/, g, and h:

p'=f(i,p,q)
q’=g(i>p>q)
v’=h(i,p,q)

where i is the vector of inputs to the unit in question, and q is the 
current state, drawn from the set {q}. These functions are usually 
logical, linear, or semi-linear, although they can be arbitrary. 
Feldman and Ballard also introduced weights into p-anA-q units.

Many of the network techniques discussed by Feldman and 
Ballard are discussed elsewhere in this book, such as winner-take-all 
networks and coarse coding, but I want to mention one such 
technique here, that of one unit mediating the connection between 
two other units in a gated connection One way to do this is to have 
the activation of a unit multiply the input that would otherwise be 
sent along the connection between two other units. The concept of a 
third unit mediating the connection between two other units can be 
generalized to three units that are connected to each other via a 
central point and which satisfy equations which predict the activation 
of any one unit given the activation of the other two.
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2.3. Types of Activation Rules
A neural network can be characterized by the type of rule that 

is used to compute the activation of units in it. Normally, the 
activation A of a node j  is some function /  of the total weighted input 
I coming into j:

WiXi
i

where i ranges over the nodes inputting to j ,  xi is the activation of 
the ith node and wi is the weight on the connection from node i to 
node j.

The major rules that have been used by connectionist 
researchers are:

(1) a linear activation rule:
A=kl

where k is some constant

(2) a binary-threshold activation rule: 
A - l  if I>no 
A=0 if I<no 

where no is a threshold

(3) a semi-linear, sigmoid activation rule

l+e-i

Linear

o = bi + a

Threshold

O = 1 if I > t 
0 otherwise

Semilinear

1 +e-1
Figure 2.1 Some neuronal activation rules. From Oden (1988a). Reprinted by 
permission.
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These rules are plotted in Figure 2.1. As we will see, the linear rule 
is limited in the number of functions that networks that are built 
using it can compute. The other two rules have been used in systems 
that do not have this limitation. They both have the interesting 
property that they transform their input to produce an activation 
between zero and one.

2.4. Early Learning Models
Two of the first neural network models introduced were the 

Adaline (Adaptive Linear Element) of Widrow (1962) and the 
Perceptron of Rosenblatt (1961). The adaline is composed of a set 
of input units xi and a single output signal y. It was originally 
specified in terms of an electrical circuit. The output y is related to 
the input values x by

y= X WiXi+M 
i

where w is a weight vector and fio is a bias. (In its original 
formulation, the adaline also contained a quantizer which output -1 
if its output were negative and +1 otherwise. This was irrelevant to 
the learning process.)

The adaline does supervised learning: the purpose of the 
machine is to compute a particular function based on the training 
given it in input/output pairs. If yk  is the output on the £th time 
step, and the desired output is y, then the adjustment in the weights 
is given by

w i,k + l =w i>k+(ylc-y)o-k

where afc is the learning rate on the Ath time step. Thus the weights 
are adjusted by a term involving the error in the output signal. It 
can easily be shown that if the set of input vectors presented is 
linearly independent, the weights will converge; otherwise they will 
oscillate. This weight change rule is called the adaline convergence 
rule, although though it might just as well be called the adaline 
oscillation rule!

In order to remove the oscillations, the learning rate a£ 
would have to decrease over the course of the learning. Kohonen
(1988) shows that the adaline convergence rule minimizes the error
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Figure 2.2. The Perceptron. The bottom 
layer is the input layer; the top layer is the 
output layer. Activation flows upward

ylc-y when the output of the adaline at time step k, yk, is viewed as 
a random variable with expectation y.

The P e rcep tro n  
(Rosenblatt 1961) is quite 
similar to the adaline. In one 
version there is a set of 
binary input units, each of 
which is com pletely 
connected to a set of binary 
output units (see Figure 2.2).
For each of these output 
units, zero is output if the 
weighted sum of the inputs at 
a given output unit is less 
than zero; one is output if this weighted sum is greater than zero. 
Ifwik is the weight between the ith input unit xi and a given output 
unit, and yk is the actual output and y the desired output (both at 
time step k) then the learning rule is given by:

wi,k+l = wi,k + Myk-y)*i

The main difference between this and the adaline is that, in the 
perceptron, the xi and yk are binary rather than real-valued. If the 
above formula converges, the machine is capable of computing the 
function on which it is being trained. Unfortunately, it has been 
shown that the above equation often does not converge, so the 
perceptron is severely limited in the number of functions that it is 
able to compute. For instance, one can prove that it is impossible to 
compute the exclusive-or function using the perceptron. For details, 
see Minsky and Papert (1969).

Both the perceptron and the adaline are feed-forw ard  
networks—that is, activation flows in one direction, from the input 
units to the output units. In networks that are more complex than 
these simple two-layer models, additional layers may be placed 
between the input and output units. If activation always flows in one 
direction, from input to output, the network is still feed-forward. 
The error back-propagation algorithm (see section 2.12) normally 
uses a feed-forward network.

Some of the literature refers to a network with an input layer 
and an output layer as a one-layer system, not counting the input 
layer; under this convention, a system with one hidden layer is a
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two-layer system, etc. In this book, we will be counting all the 
layers when we describe a system.

A third early model, the learning matrix (Steinbuch 1963) 
was developed to explicitly simulate classical stimulus-response (S- 
R) conditioning. In this system, binary stimuli were presented on 
one set of lines, and responses were trained and evoked on the 
second set of lines. The two sets of lines crossed so as to make a 
matrix, and there were connections made at the crossing points. The 
machine was trained by placing stimuli and responses on the matrix 
and then adjusting the weights of the connection points.

If the input lines are denoted by xi and the output lines are 
denoted by yj, then the weight of the connection wij is increased 
during training if xi =1 and yj=l (positive reinforcement); it is 
decreased if xi-1  and y j-0  (negative reinforcement). This increase 
or decrease in weight was a small fixed amount. The model 
achieves the same result as that achieved by classical conditioning, 
which this model was designed to simulate. If all the changes are 
small and fixed in absolute value, then the weight wij comes to 
approximate the expected value of the input line xi, given that yj is 
activated, as Kohonen (1988) points out. In a simple associative 
network, the possibility of negative reinforcement is removed 
(Willshaw, Buneman & Longuet-Higgins 1969). In this case, as 
Kohonen shows, the recall process involves a correlation of the 
current input pattern with all of the input patterns given during 
training, to determine which output pattern (or linear combination 
thereof) of the ones given during training should be produced 
during recall.

A similar model to the learning matrix was developed by 
Taylor (1956). This used Hebb’s (1949) learning rale(see the next 
section).

2.5. Hebbian and Associative Learning
Hebb (1949) proposed a simple rule for learning in neurons, 

which has recently been shown to be biologically plausible 
(Schwartz 1988). In this rule, the strength of a synapse between two 
neurons is strengthened when both of them are active.

Anderson (1983), among others (e.g. Cooper, Liberman & 
Oja 1979, Bienenstock, Cooper & Munro 1982), has studied simple 
Hebbian associative learning. He takes a set of input neurons, whose 
activations are considered as a vector / ,  and a set of output units,
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whose activations are g. If every unit i n /  is connected to every unit 
in g, these connections can be represented by an nxn connectivity 
matrix A. This matrix can learn the association between/and g by 
the modified Hebbian learning rule in which the change in the value 
of the matrix element Aij is AAij=kgjfj where k is a constant, the 
learning rate. In vector notation, this is: AA=kgfr, where fT  is the 
transpose of /  (the transpose is used so that the dot product can be 
written in vector notation).

When k=1, in which case the network learns the association 
between g and /  in one learning step, then g  can be obtained by 
inputting/using the formula g=Af, since A has come to have the 
value gfT, assuming it was initially zero.

In general, one wants to store a set of associations g;-// in the
connection matrix A, not just a single association. You can use the 
same learning rule as above, and mix different associative pairs in 
training the matrix. Each matrix element may participate in the 
association between several pairs of vectors, so this is a distributed 
memory model.

This will work well only if the input vectors are orthogonal to 
one another; that is, if their dot products are zero. Otherwise there 
will be crosstalk; if f j  and /2  are not orthogonal, and g j and g2 are 
their desired outputs, the output that one obtains when inputting// 
or /2  will be some linear combination of g] and g2, rather than 
either one of them. This is a problem with linear associative 
networks that Hopfield's work and other work on non-linear 
methods was designed to fix (see section 2.8). The surprising thing 
is the wide range of phenomena for which linear methods are 
adequate.

Since there can be at most N  orthogonal patterns in an N- 
feature input vector, the matrix is limited to N  associations. N N- 
feature vectors chosen at random will tend to be close to being 
orthogonal to one another, but not absolutely so, thus there will 
usually be some level of error.

Anderson applied this model to learning a prototype of a 
category. He borrowed his input patterns for category formation 
from an experiment done by Posner and Keele (1968a,b). Posner 
and Keele showed subjects patterns of dots on a two-dimensional 
screen. The initial patterns of N dots that subjects were shown were 
called prototypes. Then they were shown examples of the prototype, 
which were formed by randomly perturbing each dot in the
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prototype a relatively small distance. This was repeated for several 
different prototypes, and subjects were then asked to classify a 
stimulus (which may or may not have been presented as one of the 
examples) as belonging to one of the prototype classes that have been 
shown.

Knapp and Anderson (Knapp & Anderson 1984) repeated the 
Posner-Keele experiment, varying the number of examples that 
subjects saw of each prototype, and measuring the percentage 
correct classification rate. They then modeled the subjects' 
performance. They stored the patterns on a hypothetical two- 
dimensional visual cortex, where a dot in the input represented a 
sharp Gaussian peak in the response of the cortex. As trials 
proceeded, this surface received peaks from all examples of a 
prototype, and thus came to represent the average of all the 
examples (see Figure 2.3).

From the point of 
view of the associative model 
given above, each two- 
dimensional cortical activity 
pattern was collapsed to a 
single row in the matrix A , 
and the output patterns were 
1000... , 0100..., 0010..., etc. 
representing the N  different 
classification decisions. Each 
row of A represented an 
averaged pattern of activity
of all the examples of a Figure 2.3. Response surfaces from Knapp 
prototype; since only one & Anderson (1984). Reprinted by 
node is activated in the permission, 
output, learning trials result 
only in the modification of one row.

Given a particular example, more than one row may respond 
to it, and thus more than one output unit (the output units o[ respond 
to a dot product of the ith row of A with an example input fj) may 
respond. To make the classification of the input into a prototype 
class, Knapp and Anderson simply chose the output unit that 
responded the most, thus making their model non-linear. The model 
exhibited correct classification response curves on new, old (that is, 
previously seen by the system), and prototype input patterns with

MEMORY FORMATION

EXEMPLARS 
PRESENTATIONS EACH

6 EXEMPLARS 
1 PRESENTATION EACH
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respect to the number of learning trials that were qualitatively quite 
similar to those exhibited by human subjects.

Anderson also employed a simple non-linear associative 
model, the so-called "brain-state-in-a-box" (BSB). The BSB update 
rule is given by

x(t+l )=x(t)+Ax(t)

where x(t) is the the input vector, and x(t+ l)  is the auto-associative 
output. Bounds are placed on each of the dimensions of x, typically 
+1 and -1, so that it is bounded by a hypercube, and the system will 
naturally drift into one of the comers of the hypercube.

He applied the BSB model to a simple reasoning task designed 
as a pattern recognition task. In this task, there were triples of 
words: the first word in a triple was drawn from a set of human or 
divine names, e.g. Plato, Zeus; the second word was drawn from 
(man,god), and the third was drawn from (mortal,immortal). Each 
of these symbols was encoded as a string of -l's and +l's (a value of 
zero on all the places in the string indicated the absence of a 
symbol.) The patterns for the various symbols were not orthogonal.

He did Hebbian learning, of the type described above, using 
each word as a stimulus, with zeros in the positions of the remaining 
two words. The model was also taught valid pairs of words. After 
learning was complete, and it was presented with a valid pair of 
words, it always filled in the missing word correctly. Thus the 
system learned to do syllagistic reasoning via pattern completion; 
for instance, it completed the pattern (Socrates man -) as (Socrates 
man mortal). Nonsense inputs, such as (Zeus man immortal), the 
model cannot handle; it refuses to converge to a comer of the box in 
either the name or species location.

In related work on Hebbian learning, Linsker has shown in a 
recent series of papers (Linsker 1986a,b,c,1987) that many of the 
receptivity characteristics of neurons in the primate visual cortex 
can be discovered using this method of learning, extended to a 
multi-layer network.

2.6. Kohonen's Work on Associative Learning
Kohonen (Kohonen, 1988) has studied auto-associative and 

hetero-associative mappings. The simplest such mapping is that used 
by Anderson: a linear associator of the form .y=A*, where x is the
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input vector and y  the output vector. There are a set of such pairs 
xlc and yk Kohonen studied mappings that are optimal in the sense 
that if the xk are corrupted by noise, the yk  are still arrived at. For 
an auto-associative memory, each xk can be viewed as a fragment 
that functions as a key to retrieve the concatenated total vector z=(x  
followed by y).

Suppose that, in a given associative example, the xk are 
viewed as vectors spanning a sub-space of RN, where N  is the 
dimensionality of the vectors. Then any particular vector x is the 
sum of a linear combination of the xk which best approximates x's 
projection on the sub-space spanned by the xk, plus a residual. Thus

x= r+ Z akxk
k

If x is close to one of the xk, say xj, the linear combination will be 
close to ajxj. There is a mathematical technique to compute this best 
linear combination, the Gram-Schmidt process (see Kohonen 1988 
for details). Of course, the xk have to be known.

It turns o u t, and Kohonen demonstrates mathematically, that 
if the vector in question x is a noisy version of one of the vectors 
xk, say xr, so that x=xr + r, then the linear orthogonal projection

£ akxk
k

of x  onto the xk's space, as computed by the Gram-Schmidt process 
(in conjunction with least squares), is a better approximation to xr 
than x  itself. This result can be the basis for retrieval of the best- 
fitting pattern from a noisy input, and has been demonstrated to be 
quite effective by Kohonen. Here xr is the pattern to be retrieved, 
and x is the noisy input. For instance, Kohonen stored 100 
photographs of faces, and he used keys missing chunks of the photos, 
or seriously blurred by noise, to successfully index into this 
database, using this method.

The complement of this auto-associative mapping, which 
retrieves the best Xr from x, is what Kohonen calls the "novelty 
filter". This extracts just what is new, that is the residual r. This 
can detect "missing" or "new" pieces to a pattern. For instance, if a 
capital A is one of the stored patterns, and a capital A is presented, 
but without its horizontal bar, then the horizontal bar is the output



56 Neural Network Methods for Learning and Relaxation

of the novelty filter. This can be readily obtained by simply taking 
the difference between between x  and xr.

Kohonen also did, by the same orthogonal projection 
technique, an auto-associative experiment. Here images of faces 
were concatenated with an identifying tag, and then auto-associative 
recall of faces missing their tags was attempted, with half the image 
serving as key. The tags were unit basis vectors in which one 
element was unity and the rest were zero, that is, 1000..., 0100..., 
etc. In all the recall experiments the tag bit was set significantly 
higher than the rest of the bits in the tag by the retrieval algorithm, 
with the quality of recall improving with increases in the proportion 
of the reference image used as key, and worsening increases in the 
number of reference faces that are stored.

2.7. Willshaw's Binary Associator
Willshaw (1981) devised an associative network consisting of 

an array A of mxn units with binary states, which is designed to 
associate ordered pairs of binary vectors in which the first vector 
(x) is of length m, and the second (y) is of length n. It does this by 
setting the state of unit Ay to 1 if x i= l  and y i = l . Each output unit 
is receives input from all of the array units in its column. The 
output units have a threshold of q, where q is the number of input 
units that are active at any given time. This allows the the output 
unit to accumulate enough "votes" from active input units to set 
itself to one. The only way that an output unit can come on 
erroneously is if m outputs exist in the same column from other 
associations. Willshaw showed that if q is approximately equal to 
log m, the probability of such crosstalk becomes low. Willshaw's net 
can also be used as an auto-associator, in which case the array is 
square, and it can be used to complete noisy or incomplete patterns.

2.8. Hopfield's Non-linear Auto-associator
Hopfield (1982) notes that while people can design computers 

to perform specific tasks, evolution provides no such designer. Thus 
configurations of neurons must have computational properties that 
are emergent from their individual properties and connections to 
one another. These networks can be "designed" by evolution in the 
sense that the connection schemes that prove useful to the survival of 
the organism are preserved.
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Hopfield considers a wiring scheme for implementing a 
content-addressable memory (auto-associator). He begins with a 
certain class of physical system whose behavior gives you an 
automatic form of content-addressability. The state of a system like 
this can be described by giving values to a set of coordinates X] , 
X2 , ..., Xn in an N-dimensional space, called a state space, and 
the way the system evolves in time corresponds to a flow in this state 
space (in ordinary 3-dimensional space, this would simply be a 
curve through space.) Given certain types of equations—such as 
those described below—governing the state of the system over time, 
there are stable points in the state space towards which all the points 
in the immediate neighborhood flow towards. These are called 
locally stable limit points. Thus if the state at the limit point is the 
memory that is stored, and the states near the limit point represent 
partial knowledge of this memory, then starting the system at the 
partial knowledge state will cause it to settle into the complete 
knowledge state. This is Hopfield's method of achieving content- 
addressability.

More specifically, he uses neurons with binary states. The 
activations of the neurons correspond to the individual coordinates 
in the state space. Each neuron i has two possible values for its 
firing rate (activation) V/„ 0 and 1. If two neurons i and j  are 
connected, the strength of their interconnection is given by Tij- Each 
neuron has a fixed firing threshold £//. Each neuron resets its state at 
random times, but the average rate of state resetting is W. Thus the 
system, like the brain, is asynchronous, since neurons in the brain do 
not all fire at the same time. Each neuron resets itself based on the 
following rule:

Vi <—/ if input >Ui 
Vi <r-0 if input <Ui 
where input= T  yV,-

The total input that a neuron i receives is the sum of the 
activations of all the neurons connected to it, weighted by the 
strength of its connection to each one of them. This rule is similar to 
that used by perceptrons, Hopfield points out, but, as he notes, 
perceptrons are strictly feed-forward, whereas his network is bi
directional.
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Each state of the system can be represented by a bit vector of 
length n. Hopfield has his network store a set of k such states. He 
does this by using the following "storage prescription" for the 
weights:

Tij=Z (2Vsr l)(2Vj-l)
S

where i and j  are neurons and s is one of the k states. Each of the 
terms in parentheses can take on the value 1 or -1, since the Vi are 
binary; thus the value of the product is 1 if the two bits of the state 
in question are the same, or -1 if they are different. Each state that 
is being stored is given an equal "vote" in determining the overall 
weight; hence the summation sign.

There are about rfi connections; effectively what Hopfield is 
doing is encoding K  n-bit vectors in n? weights. By substituting in 
the formula for the activation of an individual neuron the formula 
for the weights, he obtains

input=X TijVf'=Z (2V*-1) [ I  Vf'(2Vf-l)] 
i s i

The mean value of the bracketed term in parentheses, Hopfield 
finds, is 0 , since any two neuron states tend to be uncorrelated, and 
(2Vi'-l) is as often 1 as it is 1, except when s=s', in which case, the 
average value is n/2 , since on average half the bits in a state s are 0 
and half are 1. Thus the input is approximately equal to

f<2Vf'-l)

since all the terms in the initial summation go away except for the s' 
term.

A critical aspect of Hopfield's model is that it is non-linear. 
The model has a step function response to input. Actual neurons 
have a response that is similar to a sigmoid function. Hopfield's non
linear constrasts with models that have a linear response, such as 
Anderson's and Kohonen's models (see sections 2.5 and 2.6).

Borrowing from thermodynamics, Hopfield defines the 
energy E of his system to be
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E = j l  T«V,Vj
ij.ixj

in the case where Tij=Tj i ’ that is, when you have symmetric 
connections. The change in E based on a change in a single neuron's 
state is

M = - U v ,  £  T ijV j

This is a monotonically decreasing function for the following 
reason. A Vi can take on the values -1 (when it goes from 1 to 0) and 
+1 (when it goes from 0 to 1). When Vi becomes 0, the summation 
is negative, since

is negative. When it becomes 1, the summation is positive. AE is 
therefore always positive, since it is either the product of two 
negative or two positive numbers. The model will continue changing 
state until it reaches a local minimum for E. Thus the model has 
stable limit points.

Hopfield ran simulations of his model for 30 and 100 neurons, 
using random initial states. This was done for the case where 
Tij^Tji, that is, in the case in which the connections were non- 
symmetric, to see if the stable limit points still existed. In most of 
the cases the model would settle to one of two or three stable states; 
occasionally it would oscillate between two states or roam around in 
a small area in state space. Hopfield has a mathematical argument 
for why stable states persist in the case of non-symmetric 
connections; this is important for the biological validity of the 
model, because asymmetric mutual connections often exist in the 
brain. Some neuroscientists question the neural plausiblity of 
Hopfield's model and of its extension to simulated annealing. (For 
information on simulated annealing, see the next section; for a 
critique, see section 2.19)

Hopfield discovered experimentally that his n neuron network 
was capable of storing about 0.15 n states, before a severe 
degradation in recall occurred. At 0.15 n, about half the states are
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recalled well, and half are recalled badly. It is necessary to reduce 
the number of stored states to 0.05 n to get perfect recall.

Each of the stored states, as a limit point, "attracts" flows 
from those states that are most similar to it, thus providing a 
content-addressable (auto-associative) memory. If a given starting 
state is intermediate between two or more of the stored states, a 
choice must be made. The statistical behavior of this choice is such 
that the probability of choosing one state or the other is related to 
the similarity of the intermediate state to one or the other stored 
state.

2.9. Modeling Neurons with Differential Equations
Hopfield and Tank (1986b) developed a sophisticated model of 

neuronal firing rates in a network. Each cell i is characterized by a 
capacitance C/ and a resistance /?/. These, together with the electric
current that is input to the cell, determine the input potential v. The 
strength of a synaptic connection between two neurons, as in the 
earlier binary model, is given by Tu ■ Hopfield and Tank derived the 
following differential equation for the behavior of the cell potential 
Ui over time:

These three terms are respectively due to input currents from 
neurons that have synapses with the neuron in question, and input 
current that is due to neurons that are external to the circuit in 
question. This equation is still an approximation, but it is a closer 
approximation to real neuron behavior than the two-state activation 
model that Hopfield offered earlier (see the last section.)

Hopfield and Tank have applied their model to a variety of 
optimization problems. An optimization problem is a problem for 
which an optimal solution must be found, out of a (typically) large 
set of possible solutions. Many problems can be stated as 
optimization problems. For example, language understanding can be 
viewed as the problem of assigning an optimal meaning to a 
sentence; speech understanding can be thought of as trying to make 
an optimal interpretation of a sound pattern as a series of words. 
One of the classic optimization problems is the traveling salesman 
problem, in which a salesman needs to visit a set of cities; the
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problem is to find the shortest tour that visits every city once, 
returning to the starting city at the end. Hopfield and Tank have 
devised a neuronal circuit to do this.

An n city tour is represented by an n by n matrix; each city 
has a row in the matrix. Each of the n units that are in a given row 
represent the n possible positions that the city can have in a tour. 
Thus a solution corresponds to a single neuron being "on" (highly 
activated) in each row, and the rest being "off'. The requirement 
that only one city can be in a given position in a tour translates to 
the rule that only one neuron in each column may be activated. 
These two constraints are achieved by hooking up all the neurons in 
each row and in each column as a winner-take-all network with 
lateral inhibition between each pair of them.

A winner-take-all network is a network in which each node is 
connected with inhibition to each other node in the network, as well 
as receiving input or activation from outside. Generally, such a 
network settles to a state in which only one node in the network is 
activated and the rest are deactivated. In Hopfield and Tank’s 
network, a unit's activation ranges between 0 and 1.

The distances between cities are put into the system by using 
them as the weights between neurons along a possible tour path. For 
instance, if neuron A2 represents city A in position 2 in the tour, 
and B3 represents cityfi in position 3, then there is a connection 
between these two neurons whose strength is set to the distance 
between A and B. Since the smaller weights (distances) contribute 
less to the energy function, and since the updating function tends to 
minimize the energy function, the system will tend to find a solution 
containing those units such that the sum of their weights is minimal. 
Hopfield and Tank found that, in a 30 city problem, the network 
found one of the best 107 solutions out of a total possible of about 
1030, thus reducing the problem space by a factor of 1023 in a single 
convergence. They point out that since the values of the units range 
from 0 to 1, and that a unit's activation represents the certainty that 
that unit participates in the solution (i.e. that a given city is in a 
given position in the tour), the network can consider a large number 
of possibilities simultaneously, instead of having to enumerate them 
the way a standard serial computer would. Hopfield and Tank point 
out that this property of having the unit activation be between 0 and 
1 is similar to properties of systems built using the certainty factors 
found in fuzzy logic and fuzzy set theory (Zadeh 1973), which has 
been applied to artificial intelligence and psychology.
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Hopfield and Tank point out that their solution to the traveling 
salesman problem and other optimization problems is an example of 
"forward engineering"; that is, specifically devising a neural circuit 
to handle a specific computational problem. They note that 
neurobiology is generally a problem of reverse-engineering, 
understanding circuits whose mode of functioning is unknown. They 
point out that accumulating experience in designing circuits gives 
one a set of principles to use when analyzing them. This experience 
may lead one to discover the principles used by biological evolution.

Hopfield and Tank emphasize the immense time savings 
involved in neural solutions to problems like the traveling salesman 
problem. They have implemented their designs in hardware. They 
note that a 30 city traveling salesman problem could be solved in 
about 0.1 seconds in a biological network of their design, using 
actual neurons, if it were possible to build such a network, whereas 
a conventional serial microcomputer could do it, using a 
conventional algorithm, in the same time, but would require 10^ 
more devices (transistors). An electronic implementation of their 
algorithm would require only about 1 microsecond.

They have devised neural versions of algorithms for other 
problems, including graph coloring, the Euclidian match problem, 
and the transposition code problem (Hopfield & Tank 1985, 1986a).

Their work raises the following interesting question: does the 
brain make use of special purpose neural structures for vision, 
language processing, and speech processing, or does it adapt 
structures that already exist by changing the strength of synaptic 
connections? It is clear that in the case of the early visual system, 
specialized connections exist, but the question as to what extent the 
brain uses hard-wired, specialized circuits for other problems is 
debatable. Clearly, people are able to learn new solutions to new 
problems; how problems are represented in the brain, and how the 
brain adapts solutions to them, are hard questions not directly 
addressed by Hopfield and Tank's model.

2.10.Simulated Annealing in the Boltzmann Machine
The Boltzmann machine (Ackley, Hinton & Sejnowksi 1985), 

like Hopfield's network, is a neural network with bi-directional links 
between units so that two units that are connected have the same 
weight on a connection in both directions. The units have binary
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states, and the goal of the system, like that of Hopfield, is to achieve 
a minimum energy

^  wijsisj+̂  0iSi 
i<j i

where 0/ is a threshold. (They use a slightly different notation than 
Hopfield: his Tij are their wij, his Ui are their 0/, and his Vi are 
their si.) This energy function is a little more complex than 
Hopfield's, since it includes the thresholds 0/. Each unit k can locally 
calculate the difference in the energy between what it is if it is 
activated (s£=l) and if it is not (sk=0); this is easily seen to be

AEk=£ wkisi-6k 
i

Thus, if the unit turns itself "on" when its input (summation term in 
the above equation) exceeds its threshold, then the energy is 
minimized. This is equivalent to what Hopfield does, although he 
does not include the thresholds in the energy function.

This deterministic algorithm was used by Hopfield, and it was 
fine for his purpose, which was to recall an exemplar pattern from 
an input pattern similar to it (or to recall a whole pattern from 
part). The above network will converge to a local minimum, and 
Hopfield uses the local minimum network states to store his 
exemplars. This is no good, however, when you are using the 
network to solve constraint-satisfying optimization problems; then 
you want the network to find the global minimum state. Ackley and 
his co-workers, following (Metropolis, Rosenbluth, Rosenbluth, 
Teller & Teller, 1953) and (Kirkpatrick, Gelatt & Vecchi 1983) get 
the network out of local minima by introducing noise. Instead of 
having each unit turn itself on asynchronously if its input exceeds a 
threshold, it turns itself on with a probability pk  that is a function of 
the energy gap AEk on the iteration k

Pkr-------------(l+e-AEk/T)

where T is a parameter that plays the same role in this system that 
temperature plays in a thermodynamic system. This decision rule is 
the same as that for a thermodynamic system in which each particle
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has two energy states. The reason why this system is of interest is 
that it will find an equilibrium state (corresponding to a global 
minimum) no matter what state it is started in. At high 
temperatures it converges rapidly to a solution, but it does not 
discriminate finely between different energy states; at low 
temperatures convergence is slower, but it is able to make this fine 
discrimination. One way to approach equilibrium quickly and 
accurately is to start with the system at a high temperature, then 
lower the temperature slowly. This is called simulated annealing, 
because it is the computational analog of the physical process known 
as annealing.

A VLSI chip that implements the Boltzmann machine is being 
built by Alspector and Allen (1987). This will run simulations about 
one million times faster than could be done by a VAX (Hinton 
1987).

2.11.Learning Weights in the Boltzmann Machine
The Boltzmann machine, like Rumelhart and his co-workers' 

back-propagation algorithm (see section 2 .12), solves the credit 
assignment problem of assigning optimal weights to connections to 
hidden units in a neural network. This problem is a classical one in 
learning; it dates back to such work as that of Samuel (1963) on 
checkers, in which a complex function was used to evaluate moves in 
a game of checkers. If the move was successful, it was difficult to 
determine which of the terms in the function should be given credit. 
In terms of a neural network divided into hidden units, input units, 
and output units, the credit assignment problem is simply that of 
setting these weights so that the correct associations between input 
and output are embodied in the network—that is, assigning credit 
(or responsibility) to the hidden units.

Ackley and his co-workers' technique, which is a learning 
algorithm, goes beyond simulated annealing alone. Simulated 
annealing is not a learning algorithm, since it does not change the 
weights. The following algorithm may be used to discover the 
optimal weights.

In this scheme, a Boltzmann machine is divided into v visible 
units and h hidden units. During training, the visible units are 
clamped—their states are fixed—and the machine is allowed to settle 
into equilibrium. Then another input is clamped. There are 2V 
possible inputs, each with a certain probability of being chosen as
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the input. A Boltzmann machine is said to model its environment 
(that is, this probability distribution of the set of inputs) if, when it 
is left running freely (with no input—no units clamped), it achieves 
the same probability distribution as its environment.

Information theory (and common sense) tells us that our 
Boltzmann machine needs to have 0(2V) units to store the 2V 
probabilities needed to specify the behavior of the environment. 
Thus in general, the system will not model the environment 
correctly if it contains less than 0(2V) units. If the environment 
contains regularities (such as patterns with odd parity being 
presented more frequently), the system can do better with less units. 
In order to get the two probability distributions to match, it is 
necessary to minimize a measure of the discrepancy between the 
two. Such a measure is

G=£P(Va)ln(P(Va)/P'(Va))
a

where P(Va) is the probability of state Va in the environment, and 
P ’(Va) is the probability of that state when the network is running 
freely. G is zero when P'(Va)= P(Va) for all x, and is positive 
otherwise. Ackley and his co-workers show that a rule that 
minimizes G is

Awij=e(pij-p'ij)

The term Awij specifies the change in the weight between 
units i and j; in order to change the probability distribution the 
weights must be changed; the relaxation process only changes the 
states of the neurons, pij  is the probability that units i and j  will 
both be on in the clamped state, and p'ij is the probability that they 
will both be on in the unclamped state, e is a constant, the learning 
rate. Both of these probabilities can be estimated by observing the 
network run. Note that though this formula minimizes G, each 
connection can adjust its weight by observing locally available 
information (the states of the units it connects). The parameters of 
the learning process are e and the length of time over which pij and 
p'ij are estimated. Errors in the estimation of the probabilities, 
which are necessitated by the requirement of observing them over 
finite lengths of time, can lead to short climbs in G.
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Instead of using the above formula for A wij, Ackley and his 
co-workers often implemented the variation whereby w ij  was 
incremented by a fixed amount y if pij> p'ij, and decremented by y 
otherwise. This gives the advantage of allowing the network to take 
larger steps when the gradient surface is relatively flat, so that it can 
proceed more quickly to the center of a wide trough in the surface.

One problem that Ackley and his co-workers applied this 
learning algorithm to is the encoder problem. In this problem, 
there are two sets of visible units, Vl and V2-, each composed of v 
units. In each group there is a single unit turned on, so that the 
visible units have a total of states. There also is a set of hidden 
units H. Each group of visible units is completely connected to itself 
and to H, but the two visible groups are not connected to one 
another. The goal of the system is to have the two groups of visible 
units agree on a code in the hidden units whereby they can 
communicate their state to one another. There must be at least 
log2v hidden units in order for this to work totally; for instance, a 
2-bit binary number in the hidden units is sufficient to encode a 4- 
bit unary number, which is what is being stored in the visible units. 
There were v inputs to the system, in each of which one unit was 
turned on in each of the two sets of visible units.

They ran instances of the encoder network with low values of 
v. The first instance they ran was the case where v = 4, the 4-2-4 
network. Each of four input vectors was presented to the system, 
which was then brought to equilibrium using simulated annealing. 
The co-occurence probabilities p ij  and p ’ij were measured by 
repeating this process with each input, and was repeated for many 
cycles. As the network learned, it first built up winner-take-all 
networks that reflected the fact that the only one unit in each set of 
visible units was activated at a time.

The network then chose encodings of each 8-bit input as a 2- 
bit hidden unit vector; often it first chose redundant encodings (that 
is, two or more inputs had the same encoding), but it later learned 
unique encodings. If three hidden units are provided, it quickly 
finds 4 unique encodings of the input, and then runs for some time 
longer as it spreads the inputs out optimally (in terms of their 
encodings). In their simulation of an 8-3-8 machine, it found 8 
encodings in 16 out of 20 trials and 7 encodings in the other four 
trials. It took over ten times as long as the 4-2-4 case to find the 
unique encodings, apparently because the weight space is much
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larger. They also ran a 40-10-40 encoder, which achieved 98.6% 
correct performance in retrieving encodings, after learning. The 
ten hidden units were more than the log240 = 6 units required.

Ackley and his co-workers note that their learning algorithm 
represents a way in which the distributed representations of concepts 
may be learned; the encoder problem illustrates this. They also note 
that the encoder problem illustrates a way in which concepts can be 
communicated between different parts of a connectionist system.

2.12.Error Back-Propagation
Rumelhart, Hinton, and Williams (1986d), developed a 

method, error back-propagation, or more simply, back-propagation, 
for learning associations between input and output patterns using 
more than than the two layers of Rosenblatt's original perceptron. 
Similar methods were developed independently by Parker (1985), Le 
Cun (1987), and Werbos (1974). Error back-propagation is a 
procedure, like Ackley and his co-workers' learning algorithm (see 
the last section) for learning optimal weights and thus solving the 
credit assignment problem. They note that Minsky and Papert, in 
their book Perceptrons (1969), pointed out the limitations of the 
two-layer perceptron, in that there were some functions from input 
to output that such devices could not compute. The solution to this 
problem is the insertion of hidden units intermediate between the 
input and output units, as in Figure 2.4. These are the "internal 
representations" that the authors speak of in their paper.

A classic example of a function that cannot be computed by a 
perceptron without hidden units is the exclusive-or (xor) logical 
operation. This cannot be computed with only two binary-valued 
input units and one output unit: rather, an additional (hidden) unit 
must be placed between the input and output that detects the 
conjunction of the two input units. The resultant network is shown in 
Figure 2.5.

Back-propagation is a supervised learning technique that 
compares the responses of the output units to the desired response, 
and readjust the weights in the network so that the next time that the 
same input is presented to the network, the network's response will 
be closer to the desired response.

Back-propagation is also called the generalized delta rule 
because it is a generalization of the original two-layer perceptron 
convergence procedure introduced by Rosenblatt (see section 2.4),
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specifically, the version developed by Widrow and Hoff (1960), 
which Rumelhart and his co-workers call the delta rule. (See also 
section 2.12).

(  M J Output Unit

+ 1/ - 2I \  + i
/  jL  \  Hidden Unit 

/  M5J \

Input Units T

Figures 2.4 (left) and 2.5(right). Fig. 2.4: A three layer perceptron. The bottom 
layer is the input layer, the middle layer is the hidden layer, and the top layer is the 
output layer. There may be different amounts of units in each layer. Activation 
flows upward. Fig. 2.5: A network for computing the exclusive-or function from 
Rumelhart et al. (1986d). Reprinted by permission

The delta rule is as follows: If the network is presented with 
input pattern p,  let the response of the network on output unit j  be 
Opj If the desired target output is tpj, then the difference is given by 
dpj=tpj'°pj- If the ith unit of the input pattern has input Ipi, then the 
change in the weight connecting units i in the input with j in the 
output is given by

DpWji=zdpjIp i

where z is some constant. This formula is applied iteratively, and 
may cause a convergence of the actual and target output.

The generalized delta rule was developed in the context of a 
layered, feed-forward network that has units with a semi-linear 
activation function. To review, a layered feed-forward network is 
one in which there are distinct layers of units; the input is the lowest 
layer, and the output is the highest, and all activation flows from 
lower to higher units. A semi-linear activation function is defined 
for their purposes as one that is a non-decreasing function of input



Neural Networks in Artificial Intelligence 69

that is differentiable everywhere. Thus a sigmoid activation function 
such as that typically used to model neuron response qualifies as 
semi-linear; a binary threshold does not, because it is not 
differentiable at the threshold point.

The form of the generalized delta rule is the same as that of 
the regular delta rule. For unit i whose output is 0 /, the change in
the weight connecting it to a unit j to which it outputs is 
ApWji=kdpjOpi. The generalized delta rule's error signal dpj differs 
from the standard error signal. If unit j  is an output unit, then

^pj-^pj'Opfifj(mtpj)

This formula is the same as before, except for the addition of the 
term fj(ne tp j) . This is the derivative of the activation function, 
evaluated at netpj, which is the net input that unit j  is receiving, (see 
the next section for a description of f(netpj)). Thus this term 
represents the rate of increase in the input that unit j  is receiving.

In the case where j  is not an output unit, the error signal is a 
function of the error signals of units that it is connected to, higher up 
in the network. This is the origin of the term back-propagation. The 
errors on the connections from the top level of hidden units to the 
output units are computed directly with the above formula. Then the 
errors in the connections from units in layers below the top two 
layers (the top hidden layer and the output layer) that are connected 
to the top two layers are computed in terms of the errors on the 
connections between the top two layers, and so on. Thus, while 
activation in the network propagates forward (upward), when 
computing the output, errors propagate backward, in order to adjust 
the weights. The error in a connection that is below the top is given 
by:

dpi=f j ( netpj) X dpkwk- 
k

where k ranges over all the units that unit j  outputs to. Thus the 
error for a hidden unit is the weighted sum of the errors in the units 
that that hidden unit outputs to, multiplied by the rate at which the 
input to that hidden unit is changing.

Rumelhart and his co-workers have shown that the delta rule 
minimizes the total sum squared error (between the target and actual 
output) in the case of units with a linear activation rule. If you have
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n output units, the weights connecting them with the input units form 
a n -dimensional space. If the error is assigned an additional 
dimension, making a n+1 dimensional space in this conceptualization, 
then it is a "hyper-surface" in the space. Rumelhart et al. have shown 
that the delta rule finds a minimum value for the error in this 
surface, and thus always sends the error plummeting most steeply, 
which they call steepest gradient descent.

The error surface can be visualized as a hilly landscape. Each 
point on its surface corresponds to a particular set of values for the 
weights in the network; the height at that point corresponds to the 
error. Steepest gradient descent means that, wherever you are on the 
surface, you always go in the steepest direction toward the valley. Of 
course, this only guarantees that the algorithm will find the nearest 
valley (local minimum) from where you happen to be on the error 
surface; it will not necessarily find a global minimum in the error.

The generalized delta rule was derived based on the desire that 
it have this behavior, steepest gradient descent. Taking this as an 
assumption, Rumelhart and his co-workers were able to derive the 
above formulas for back-propagation.

Hinton (1987) has observed that back-propagation typically 
learns in what appears to be O(N^) steps on a conventional serial 
machine, where N  is the number of connections in the network. This 
would be reduced to O(N^) on a parallel machine with one processor 
per connection.

2.13.Applications of Back-propagation
Having developed the rule, they proceeded to apply it to a 

variety of problems. For their simulations, they used the sigmoid 
semi-linear activation rule

Opj=-------------------------- - = f &  w ijOpi+ Qj)=f(netpj)
( l + e &  wiPpi+^ )  i

They used a constant £ in their weight change rule that was small 
enough to avoid sharp changes in the error surface that would throw 
off the gradient descent.

They used the network shown in Figure 2.5 for solving the 
exclusive-or (xor) problem. They solved it hundreds of times using 
different random initial weights, and the network settled into a 
solution state except in two cases, in which it found a local minimum
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in error space. They also solved it using different network 
topologies; for example, with a network with two hidden units 
instead of one.

They also used back- 
propagation to solve the 
parity problem, that is, 
determining whether an even 
or odd number of input units 
are activated. Like the 
exclusive-or problem (which 
is a special case of the parity 
problem), this is a problem 
that Minsky and Papert 
(1969) showed that a two- 
layer perceptron could not 
handle. Rumelhart and his 
co-workers handle it by 
using a th ree -lay er 
perceptron with an equal number of input and hidden units and a 
single output unit (see Figure 2.6). They trained this network to 
respond correctly.
2.14. Learning Family Relationships

Hinton (1986) gave an interesting example of how concepts 
can come to be embodied in distributed representations using back- 
propagation, and how this leads to automatic generalization when 
inputs are given that are novel, that is, not included in the training 
set. The knowledge domain used by Hinton is that of family trees; 
the relationship between any two people in a family tree can be 
represented by a triple: (personl relationship person2).

The five-layer feed-forward network that Hinton devised had 
two sets of input units, for the first two items in the above triple 
respectively. There are 24 input units for (personl), locally encoding 
the 24 possible people. There are 12 input units representing the 12 
possible relationships. These 36 units comprise the first layer Each 
of these input units is connected to its own set of 6 units in the second 
layer, which learn distributed representations of the input. Each unit 
in both sets of 6 is connected to all of the 12 units in layer 3, which 
are in turn completely connected to 6 units in layer 4. Finally, all 
the units in layer 4 are connected to a layer of 24 output units in 
layer 5 representing the third item in the triple (person2). The only

Figure 2.6. A network for computing the 
parity problem from Rumelhart et al. 
(1986d). Reprinted by permission.
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place that this feed-forward network is not completely connected is 
in the connections between layers 1 and 2 .

Thus the network functions as a triple completion machine. 
Hinton used the two family trees shown in Figure 2.7; these contain 
104 relationships, of which 100 were used for training with back- 
propagation. After 1500 sweeps through the 100 training instances, 
the network performed correctly on all of them, with correct 
performance defined as the correct output unit having an activation 
of greater than 0.8 (out of 1.0) and all of the rest of the output units 
having an activation of less than 0 .2.

Christopher = Penelope Andrew = Christine

Margaret = Arthur Victoria = James Jennifer = Charles

I ' I
Colin Charlotte

Roberto = Maria Pierro = Francesca

Gina = Emilio Lucia = Marco Angela = Tomaso

Alfonso Sophia

Figure 2.7. Family trees used by Hinton (1986). Reprinted by permission.

Some aspects of the distributed representations learned in the 
hidden units are particularly interesting. Unit 1 in the hidden units 
in layer 2 representing personl encodes nationality. Unit 2 encodes 
what generation in the family tree personl belongs. Unit 4 encodes 
the branch of the family tree the person belongs to. Unit 1 in the six 
hidden units in layer 2 encoding the relationship encodes the sex of 
person2; it is encoded here because the relationship (e.g., brother, 
mother) also describes the sex of person2. There was no need to 
encode the sex of personl because this placed no constraints on the 
identity of person2, given the set of relationships used.

The isomorphism between the two family trees led to an 
economy of representation. The two items occupying the same slot 
in their respective family trees had a similar representation, except 
for the one unit encoding the English/Italian distinction.

Generalization was tested using the four relationships that 
were not used in the training. The training was repeated twice, using
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different initial random weights. In one of these cases, it got all four 
novel stimuli correct; in the other it got three out of four correct. 
Here, out of necessity, the criterion for what is correct was relaxed 
somewhat; a correct response entailed activation of over 0.5 on the 
correct output unit and less than 0.5 on the remaining units.

2.15. Competitive Learning
Competitive Learning is a mechanism in which units in higher 

layers in a connectionist network compete to recognize features in an 
input layer. It is a type of unsupervised learning, since no 
information is presented other than the input data to help a 
competitive learning algorithm to form features. Many versions of 
competitive learning exist: we discuss a few: the version of 
Rumelhart and Zipser, that of Carpenter and Grossberg, and that of 
Kohonen. Others include the work of Von der Malsburg (1973), 
Fukushima (1975), and Amari (1983). We then turn to the Neuronal 
Group Selection theory of Reeke and Edelman, which is an 
competitive learning theory of the brain.

2.16. Competitive Learning Using 
Feed-forward Networks

Rumelhart and Zipser (1985) studied one form of competitive 
learning. The type of competitive learning networks studied by 
Rumelhart and Zipser are feed-forward, with an input layer and one 
of more feature-recognition layers.

Nodes in each of the feature-recognition layers are grouped 
into clusters, and each unit in a cluster inhibits all the others, 
resulting in a winner-take-all situation within the cluster, whereby 
one unit becomes activated at the expense of all the rest. Each unit in 
the cluster receives input from the same set of units in the layer(s) 
below, but has different weights on these connections, resulting in 
different activation. The weights of only the winning unit are 
adjusted. In the version they studied, the weights coming into a unit 
summed to one.

For simplicity's sake, let us consider a two-layer system of 
input units and inhibitory clusters. The connection to a unit j  in one 
of the clusters from a unit i in the input layer are weighted by wij 
The activation received by a unit equals
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X  Wifi
i

where ci is the activation of input unit i. In Rumelhart and Zipser's 
model, all the c/'s are binary. The activation of the units in a cluster 
range between zero and one; after winner-takes-all competition 
within each cluster has taken place, the activations in the clusters are 
also binary—one unit in each cluster has value one and the rest are 
zero. The wij' s for the unit that wins are then adjusted according to 
the following rule:

Awij=g(^-wij)

where g is a constant (the learning rate), cik is the ith component of 
the stimulus k, and nk is the total number of input units that are 
activated in the stimulus k. Thus, on each iteration of the learning 
process, the vector of weights moves closer to a normalized version 
of the input presented in that learning cycle. If all the inputs were 
the same, say the constant vector c, the vector of weights of the 
winning unit would come to be equal to clnO, where nO is the 
number of ones in c. If all the inputs are not the same, individual 
units would come to be responsive to clusters of similar inputs, with 
the weights representing an input in the center of each cluster, in a 
similar manner to the self-organizing maps of Kohonen (see section 
2.18)

Rumelhart and Zipser trained such a network to respond to 
adjacent dipole stimuli on a 4x4 grid; that is, each dipole stimulus 
was composed of two active nodes on the input grid, which were 
vertically or horizontally adjacent. They first connected each of the 
16 input units to an inhibitory cluster of size two. Learning caused 
one of these units to become more responsive to activation on half 
the grid, and the other to be more responsive to the other half. The 
grid was divided in such a way horizontally, vertically, or 
(occasionally) diagonally, depending on the initial configuration of 
the weights, which was random. Thus the network detected the 
locality in the input.

The inhibitory cluster's size was then increased to four units. 
After one convergence, the input grid was partitioned into four 
regions, each of which had a maximally responsive unit, three of
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which were 2x2 squares and one of which was divided into two 
pieces (see Figure 2.8). When a stimulus bordered two regions, it 
was classified into one or the other region. More units would 
classify the stimuli even more locally, up to a limit of 24 units, each 
of which would respond to one of the 24 possible dipole stimuli on 
this grid.

The next experiments 
in competitive learning that 
Rumelhart and Zipser 
conducted involved letter and 
word recognition. They used 
a 7x14 grid to present two 
letters to the system; each 
letter was contained in a 7x5 
section of the grid, with two 
blank columns to the right of 
each letter. They used the 
letters A, B, C, D, E, and S 
as stimuli. The specific 
experiments, stimuli, and 
output cluster descriptions 
are given below.

Since these letters only 
sparsely occupied the grid, as 
they are hollow, so some 
units are rarely or never 
activated, there is the 
possibility that some of the 
units in the output Figure 2.8. The 4 by 4 grid of input units 
classification cluster will used by Rumelhart and Zipser (1986) marked 
never win. They suggest two by four symbols (0,X,black square, white 
solutions for this problem, square) according to which of 4 units in an 
The first changes the learning inhibitory cluster responded most to that each 
rule S O  that it is "leaky", SO  input unit. The numbers measure how long 
that both the winning unit and the system has learned. Reprinted by 
all the losing units have their permission.
weight vectors moved toward the input vector, but the winner is 
moved faster—Rumelhart and Zipser moved it an order of 
magnitude faster. This moves all units into regions into which they 
can eventually win. The other idea, due to Bienenstock, Cooper, and 
Munro (1982), is to associate with each unit an additional number,



76 Neural Network Methods for Learning and Relaxation

called its sensitivity, which becomes a multiplicative factor in the 
formula for its activation. The sensitivity is based on the number of 
inputs that a unit wins on; it increases its sensitivity when it fails to 
win, and decreases it when it wins. By this mechanism, every unit 
can come to win and thereby move closer to some cluster of inputs. 
Rumelhart and Zipser used both techniques; which one was used 
mattered little, they found.

Rumelhart and Zipser's first experiment presented four pairs 
of letters, AA, AB, BA, and BB; their output was composed of an 
inhibitory cluster of two units. In some cases, one unit responded to 
A A and AB, and the other to BA and BB; in the others, one unit 
responded to AA and BA, and the other to AB and BB. By 
examination of the weights, it was clear that in the former case, one 
unit responded to A in position 1, and the other unit responded to B 
in position 1; in the latter case, the same responses were found with 
respect to position 2. Each unit had similar connections to the 
position to which the two units were not responding. When the 
number of units in the inhibitory cluster was raised to four, one unit 
responded to each of the four patterns. Thus the same competitive 
learning mechanism can be used for both position-specific letter 
detectors and word detectors.

Next, Rumelhart and Zipser changed the stimulus patterns to 
AA, AB, AC, AD, BA, BB, BC, and BD. With two units in a 
cluster, they always became sensitive to the letter in the first 
position, because there were two possibilities there; with 4 units, 
each unit responded to one of the four possible values in the second 
position.

They demonstrated the ability of their network to classify 
stimuli by presenting the letters A, B, S, E to an inhibitory cluster of 
two units. The cluster correctly classified B with S and E with A; 
each element in each of these pairs is quite similar to the other, in 
terms of the patterns that they used. They then presented the patterns 
AA, BA, SB, EB to an inhibitory cluster of size two. As before, the 
cluster became a detector of which letter was found in position two, 
but the units also responded to the E or S in position one. One unit 
responded to a B in the second position and an E or S in the first; the 
other unit responded to an A in the second position and an A or B in 
the first. Thus the units come to respond to all the clustering 
information available in the input, even though it was redundant.

Rumelhart and Zipser's final experiment attempted to get the 
units in a cluster to respond to vertical and horizontal lines. They
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used a 6x6 grid, and presented as input the 12 possible vertical and 
horizontal lines of length 6. The trouble with recognizing horizontal 
vs. vertical in a single perceptron output layer is that every output 
unit participates in both a horizontal and a vertical line. They had 
hoped that each of the two units in an output cluster would respond 
to parallel bands of vertical or horizontal activation. Unfortunately, 
the system failed to classify the inputs in this way. Instead, each of 
two units responded to half of the vertical and horizontal lines. One 
unit responded to the vertical and horizontal lines that intersected the 
lower right quadrant of the input grid, and the other unit responded 
to those that intersected the upper left quadrant. The units clustered 
inputs in this fashion because clustering in this form of competitive 
learning is based on overlap in input patterns, and none of the 
vertical stripes overlap with one another, and neither do the 
horizontal stripes.

Rumelhart and Zipser forced the system to recognize the 
horizontal/vertical distinction by adding additional input units. In the 
case of the horizontal stripes, a static horizontal stripe in the 
additional units was added to each input. The same was done with 
the vertical stripes; in this case, a static vertical stripe was added. 
This fixed the problem, but there was nothing about the original 
classes of stimuli themselves that caused the system to distinguish 
them, other than the fact that two distinct static teaching patterns had 
been added, one of which was associated with each class. The fact 
that the static teaching patterns happened to be stripes and matched 
the rest of the input was irrelevant.

To approach the learning of the horizontal/vertical distinction 
in another way, they also built a three-layer system which had a 
middle layer of two clusters of four units each right above the input 
layer, and a top layer of a cluster of two units, each of which was 
connected to the eight units below it. Each of the four units in a 
cluster in the middle layer came to respond to either half the 
horizontal stripes, or half the vertical ones. The units in each cluster 
usually came to recognize different sets though, which gave the units 
in the top cluster enough information to perform the 
vertical/horizontal classification.

The vertical/horizontal distinction is an example of a 
classification that is not linearly separable. This means that there is 
no weight vector that, when the dot product between it and an input 
vector is taken, can determine by the value of the dot product what



78 Neural Network Methods for Learning and Relaxation

the classification of the input should be. A competitive learning 
system involving three or more layers often solves this problem.

2.17. Competitive Learning using 
Adaptive Resonance Theory

Carpenter and Grossberg (1987) propose a network that does 
competitive learning (self-organization) based on Grossberg's 
Adaptive Resonance Theory (ART) (1976). This network is 
sensitive to novel stimuli, as people are. Their system is divided into 
two subsystems; an attentional subsystem, which processes familiar 
stimuli, and an orienting subsystem that detects unfamiliar input 
patterns, and resets the attentional subsystem when it detects such a 
pattern. The network as a whole forms its own clusters of patterns, 
and thus acts as an unsupervised classifier.

Their system uses "self-scaling" units. This is needed because 
a feature that is "necessary" in one pattern may be superfluous or 
noise in another. The self-scaling property of units is the ability for 
them to recognize that in different types of patterns there may be a 
different number of critical features. This is quantified by a 
parameter called the vigilance level.

When familiar patterns are encountered, little settling of the 
network occurs and the system functions like a look-up table, quickly 
finding the (network-created) category for that familiar pattern. 
The environment can also act as a teacher; the network learns to 
respond to the differing precision of a category's definition by 
automatically detecting statistical properties of categories. Thus, if 
the examples are all very similar, any new example would have to be 
just as similar in order to be classed in the same category. If the 
category is looser, so is classification. This is designed to reflect 
human performance (Posner 1973); people pay attention to detail if 
it is necessary. If the system receives negative reinforcement from 
the environment, it will become more discriminating in its judgment, 
for the category in which a misclassification has occurred.

Their system, shown in Figure 2.9, is layered. The input /, 
which may be preprocessed in some way, becomes an activation 
pattern X across a set of nodes in layer 1, FI. Nodes in FI are 
linked to nodes in the next layer up, F2, by connections that have 
corresponding nodes in long-term memory (LTM). The signal 
received at a node in F2 is the product of the node value in FI and 
the value in LTM; the LTM value is said to gate  the FI value
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(functioning in a manner similar to a weight). Each node in F2 adds 
up all the information that it receives along all the gated connections 
that it has with nodes in FI to create a pattern Y in F2. FI and F2 
together are the system's short-term memory (STM). The nodes in 
F2 interact with each other to get further contrast enhancement, that 
is, to separate the input patterns from each other in terms of the 
response in F2. The other parts of Figure 2.9 will be explained 
below.

One method of doing 
this contrast enhancement is 
by a process whereby the 
nodes in F2 become a 
winner-take-all clique (as in 
the competitive learning 
scheme of Rumelhart and 
Zipser), but in general, more 
than one node in F2 can be 
active at once. A winner- 
take-all clique in F2 can 
function as a classifier. The 
gated connections between FI FiSure 2 9■ The network of Carpenter and 
and F2 are called the Grossberg (1987). Reprinted by permission.
"adaptive filter" by Carpenter and Grossberg.

After FI activates F2 to create Y, F2 gives feedback to FI via 
another adaptive filter, also gated by LTM. This creates a new 
(modified) activation pattern across FI, X * . I f X* differs 
significantly from X, this attenuates the initial activity in FI, and a 
subsystem, called the orienting subsystem detects this attenuation, and 
sends a burst of inhibition to all the active nodes in F2, which lasts 
for some time. The purpose of the orienting subsystem is to create 
novel responses to novel stimuli.

X * thereby disappears and X  is reinstated by /, thereby 
precluding further (immediate) bursts of inhibition from the 
orienting subsystem. The system then attempts to create a new 
pattern Y' in F2, which cannot be the same as Y, because the active 
nodes in Y continue to be inhibited for some time. The system 
continues to search for the right pattern in F2 until it finds a pattern 
whose top-down activation to FI does not produce a significant 
attenuation in FI, which would reactivate the orienting subsystem.
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The orienting subsystem responds to novel stimuli because only 
novel stimuli will produce attenuations in FI.

Two additional concepts apply to the attentional mechanism of 
the system; attentional priming and attentional gain control. 
Attentional priming occurs when top-down feedback to F2 creates a 
pattern in FI before the input has a chance to affect the FI nodes. 
An expectation is thereby created in the FI nodes. The attentional 
gain control controls the degree to which FI responds to top-down 
versus bottom-up input, thus allowing the system to respond 
differently to the two situations.

Carpenter and Grossberg use what they call the 2/3 rule to 
determine whether or not the FI units produce output. In order for 
them to produce output, 2 out of the 3 sources for input to FI must 
be active: these are the input pattern, feedback from above, and the 
attentional gain control. Since only the presence of an input pattern 
can trigger the attentional gain control, the 2/3 rule guarantees that 
only input from stimuli allows the FI neurons to fire. The 2/3 rule 
is necessary to maintain consistent pattern classification over time; 
without the rule a pattern A may become classified by the 
responsiveness of F2 node q and later by a different F2 node r.

Carpenter and Grossberg note that, at a fixed vigilance level, 
their system may classify two stimuli A and B differently and C & D 
the same, even if A differs from B on exactly the same features on 
which C differs from D. If the system has been initially trained with 
a vigilance level that allows it to distinguish A from B, it will not 
distinguish C from D in its classification if C and D have more 
features than A and B. This behavior, Carpenter and Grossberg 
point out, is akin to "attentional focusing" in people; that is, 
discrepancies are less noticed if they are a smaller proportion of the 
total pattern being paid attention to; when you "zoom in" on part of a 
pattern, discrepancies become more apparent.

They note that the vigilance level is directly related to the 
number of categories that the input patterns are classified into. For 
instance, they classified bit patterns representing letters using their 
algorithm. With a vigilance threshold of 0.5, the system classified 
the 20 letter patterns presented into four groups; with a threshold of 
0.8, it classified them into nine groups. The critical patterns that 
were stored as top-down weights in the system were significantly 
different in the two cases, being more specific in the latter case. If 
the vigilance level is set high enough, each letter would be classified 
into its own (singleton) set. Thus the total resource requirements of
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the system is a function of the vigilance level and the total number of 
input patterns.

The response of units in Carpenter and Grossberg's system is 
described by non-linear differential equations; Lippmann (1987) has 
shown them to be equivalent to the following simpler mathematical 
formalism; I borrow his notation.

There are n input units (FI) and n output units (F2). There 
are top-down and bottom-up connections between each input unit i 
and each output unit j, the weights of which are denoted by tij and bij 
respectively. These connections comprise what Carpenter and 
Grossberg call the adaptive filters. All the ti are set to 1 initially, 
and all the bij to lln. Binary input is applied to FI and each unit in 
F2 computes its activation mj as follows:

mj = X  b ij(Oxi 
i

where xi is the input applied to the input units. In this example, a 
winner-take-all network is used, so that only the largest unit is 
selected to be activated. The sum of the activation in FI:

n = Z x>
i

is compared to the sum weighted by the top-down connections

IT-Xf=£ tijXj
i

If /T-X/IX is greater than a vigilance threshold p, this signals a 
misclassification. The output unit that formerly responded to the F 
pattern is disabled, and a new output unit wins the competition. This 
is repeated when the vigilance threshold is not exceeded, and another 
output unit that corresponds to the current classification has been 
chosen. The system then integrates this information by changing its 
weights in the following manner, if j* is the correct output node

tij*’=Xitij* for all i
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bij* ' = — -------- f o r  a n  i

i Z

where the bottom-up connections are normalized so that the average 
activation received by an output node will not exceed one in 
magnitude. Over time, the top-down and the bottom-up connections 
to an output node come to represent an average of all the examples 
that have been successfully classified using that output node. The 
vigilance threshold controls the dispersion of the examples in a 
category. Carpenter and Grossberg allow negative reinforcement to 
change the value of the vigilance threshold to allow the system to 
respond differently to categories of differing "fuzziness".

2.18. Kohonen's Self-organizing Topological Maps
Kohonen's (1988) model of self-organization is based on the 

idea that the brain tends to compress and organize sensory data 
spontaneously. Self-organization is Kohonen’s term for unsupervised 
learning. He starts with the observation that neural networks in the 
brain tend to consist of layers of neurons, which obey the "Mexican 
Hat" function; that is, units strongly excite those units nearby them, 
and inhibit those not so near (see Figure 2.10). He uses networks 
with large numbers of lateral connections to implement this, and a 
sigmoid activation function for his units. These types of networks 
tend to contain "clusters of activation". If there is more lateral 
inhibition, clusters tend to be smaller; if there is more excitation, 
they tend to be bigger

The purpose of 
Kohonen's self-organizing 
mappings is that patterns of 
high dimension (i.e., long 
vectors) are transformed into 
one or two-dimensional 
patterns, such as the two- 
dimensional clusters just 
described. For example, in a 
situation where input units Figure 2.10. The "Mexican Hat" function of 
are m apped  onto  Kohonen (1988). Reprinted by permission, 
corresponding output units, a self-organizing system would give a 
localized response—that is, a single output unit responding most,

Interaction
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with activation falling off in the units around it, for each input 
pattern provided.

He defines a topology-preserving mapping onto a one
dimensional set of output units as one that reproduces some ordering 
that is placed on the input patterns. For instance, if the input 
patterns are ordered as (xi, X2 , ...rXn) a topology-preserving 
mapping (e.g., state of the internal weights of the system) is one in 
which unit o\ is most active when pattern xi is presented, unit 02 is 
most active when X2 is presented, etc., where the o's are the output 
units. Thus the spatial relations of the output units reflect the 
ordering of the input patterns. Kohonen notes that this can be 
thought of as a projection of the original high dimensional vector 
onto a linear scale.

If this is extended to two or more dimensions, the 
mathematics that describes what is topology preserving becomes 
more complex, but the intuition of a projection still holds. For 
instance, if the various input points are, as vectors, distributed on a 
curving, twisted surface, they will be mapped onto units on a flat 
plane. Distances between points will not be preserved but their 
topology will—that is, input vectors that were adjacent to each other 
will still be adjacent to each other: more strictly, if B is between A 
and C, this will be the case after the mapping as well.

Kohonen gives the example of a two-dimensional self
organizing system, that is a two-dimensional rectangular or 
hexagonal lattice, in which each unit in the grid receives input from 
each input unit, and forms a function of the weighted sum of these 
inputs, in which the weights are adaptive. The purpose of Kohonen's 
system is to evolve localized response patterns to input vectors. If 
two input vectors are similar, they evoke similar localized response 
patterns.

The way this is accomplished is as follows: each output unit 
has a vector of weights which connects it with the input units. These 
weight vectors are initially random. At each time step, the dot 
product of the weight vector of each unit with the current input 
vector is formed:

Oj=X wik*k 
i
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where xk is the kth component of the input vector,oj is the 
activation of the ,/th output unit, and the wik  are the weights 
connecting them.

After the activation of each output unit is computed, the 
output unit with the maximum activation level is selected. This is 
the unit whose weight vector is most similar to the input vector. 
This weight vector is then adjusted to be even more similar to the 
input vector by the rule

Ao( tk+i)= a (  tt)(x( tk)-o( tk))

in which x and o are the input and output vectors respectively, a  is 
the learning rate, Ao is the change in o, and tk and tk+1 are the kih 
and (&+7)st time step respectively. This is a version of the 
perceptron convergence rule (see section 2.4), and is similar to the 
competitive learning scheme of Rumelhart and Zipser (see the last 
section.)

At each time step this rule is applied to the maximally 
responding unit and to all the units within a certain distance d  of this 
unit. The fact that that the rule is applied to nearby units is what 
leads to the topology-preserving properties of the mapping, and 
distinguishes it from the competitive learning schemes discussed in 
the previous two sections. As the learning proceeds, d  is decreased, 
as is the learning parameter a. Relatively high values of these two 
parameters allow areas of units to quickly respond to different types 
of input patterns, whereas "fine structure" aspects of the topology of 
a set of input vectors are worked out in the later stages of the 
learning, as d and a  decrease.

An example of a self-organizing system that Kohonen gives is 
one in which the output units come to recognize ranges of signal 
frequency; adjacent output units recognize adjacent ranges. The 
input units are resonators that each respond to an initially random 
(but then fixed, for each resonator) range of frequency. Each of 
these input units is randomly connected to a set of output units. 
When the system is trained on an input set of randomly chosen 
frequencies, using the protocol for a self-organizing system given 
above, the first output unit comes to recognize the highest 
frequencies in the input range, the next a slightly lower value.

Kohonen gives two examples of systems that capture a 
hierarchical set relationship between input elements in a topological 
map. In his first example there are 32 symbols each represented by
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a sequence of five octal digits, 
which code hierarchical 
relationships For example, if 
symbol C is represented by 
30000, F by 31000 and G by 
32000, F and G are viewed as 
more specific versions of C.
The complete code is shown in 
Figure 2.11, and the result of 
a hierarchical clustering 
analysis is shown in Figure 
2.12. When the self
organizing algorithm using the codes as training data was run using 
a two-dimensional hexagonal array of output units, the result shown 
in Figure 2.13 was obtained. Here, for each symbol, the unit 
responding maximally to it is shown. One can see that the 
topological map duplicates the information given by the hierarchical 
clustering process, although the straight lines in Figure 2.12 are 
deformed in Figure 2.13. Nevertheless, all the topological 
clustering information is present.

The second example of classification in a two-dimensional 
array is given by a system that came to recognize and cluster natural 
phonemic data. After training on this data—sampled at 15 different 
frequency values—the system arrived at the map given in Figure
2.14. This map shows similarity relations between phonemes, based 
on the metric used by the system, which was the scalar product, 
taken between two phoneme input patterns. In Figure 2.15, the 
phoneme to which each unit responded maximally is shown. As 
expected, clusters are apparent.

Item

Char. A B C D E F G H I  J K L M N O P Q R S T U V W X Y Z 1  2 3 4 5 6

<, 1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
{j 0 0 0 0 0 1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
() 0 0 0 0 0 0 0 0 0 0 1 2 3 4 3 6 7 8 3 3 3 3 6 6 6 6 6 6 6 6 6 6
(« 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 1 2 3 4 2 2 2 2 2 2
{} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  2 3 4 S 6

Figure 2.11. An Encoding of 32 sysmbols by 5 octal digits. From Kohonen 
(1988). Reprinted by Permission.

Figure 2.12. The result of a hierarchical 
clustering analysis of the code given in Fig. 
2.11. From Kohonen (1988). Reprinted by 
Permission.
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Figures 2.13-2.15. Topological maps formed by a self-organizing algorithm. From 
Kohonen (1988). Reprinted by Permission.

2.19. A Population Biology
Approach to Connectionism

Reeke and Edelman (1988) criticize approaches to 
connectionism that are inspired by physical systems, such as those 
given by Hopfield, and by Ackley and his co-workers (see sections 
2.8 and 2.10). Although these approaches take their inspiration from 
biology insofar as they attempt to use realistic model neurons and 
use brain-like terminology, they are not modeling anything that is 
really present in the brain, according to Reeke and Edelman. To 
quote, "in the attempt to find regularity in biological systems, many 
features have been introduced into their simulation in connectionist 
system that are quite unbiological."

Reeke and Edelman take issue with the idea that the organism 
is simply a vessel for information already structured in its 
environment instead of a creator of information, which it 
synthesizes by applying criteria to its environment. They note that 
each individual must construct his or her own categories. In other 
words, they are advocating a model of the mind as an unsupervised 
learner in which much of the clustering of stimuli into classes is not 
readily inherent in the stimuli.

They note that the nervous system is composed of distinct 
areas, and each area has a distinct pattern of connectivity and is 
specialized for a different task. Different sub-networks interact and 
exchange information, building up more complex functions, which 
none of them could compute on their own. They note that regions 
seem to have been gradually added to the brain over the course of 
evolution, adding additional functions while coordinating their work 
with older sections. The brain is asynchronous; that is, events in 
different parts of the brain are not synchronized with one another. 
No one neuron is essential for the operation of a given network, and
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there are typically many paths connecting any two neurons that are 
connected at all. Apparently patterns of activation are what is 
important in the brain, not local activations of individual neurons. 
Thus representations are distributed.

One factor that Reeke and Edelman emphasize that seems to 
have been left out of most discussions of connectionism is the 
diversity of neuronal populations. This diversity takes two main 
forms. First of all, because of stochastic variation in development, 
genetically identical animals—twins—have different numbers of 
neurons and they are arranged differently. Even corresponding 
individual neurons differ from one another. They note that it is 
easily calculated that the human DNA does not contain enough 
information to totally specify the location and connectivity of the 
approximately 1011 neurons in the brain. Thus much of actual brain 
structure must be due to random and epigenetic events that occur 
during development. The local physical and chemical environment 
of a neuron influences that cell's development. Thus, Reeke and 
Edelman point out, the brain is not an optimally devised computer, 
but a variable structure. This variability is likely to be functional, 
since it can be used by natural selection.

Reeke and Edelman suggest that selection plays an important 
role in deciding what structures are used in development, and how 
their functioning develops during the brain's maturity. They think 
that these active structures are selected from a set of "repertoires", 
each of which is a set of interconnected neurons, and these selected 
repertoires come to play a major role in the functioning of the 
brain. This selection takes place over the lifetime of the organism 
(as opposed to Darwinian natural selection, which takes place over 
the lifetime of a species and its precursors). They have called their 
theory neuronal group selection (NGS). In terms of the models we 
have seen so far, it is a form of competitive, unsupervised learning, 
but it differs from the others in that it is explicitly a theory of brain 
function.

NGS theory provides for two forms of selection. The first 
occurs during the prenatal period of the brain's development. 
Selection between competing neurons during this period leads to the 
development of connections. After birth, the connectivity patterns 
are fixed, and the second form of selection occurs, whereby neurons 
compete to participate in active pathways and networks. This form 
of selection adjusts the weights of synaptic connections, but does not 
change the connectivity of the brain.
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Reeke and Edelman list three required attributes of a selective 
system: there must be a variety of entities able to respond to the 
environment, these entities must receive input from their 
environment, and they must be able to receive differential 
reinforcement, so that one or the other entity wins out. They 
estimate that the selective groups (repertoires) contain 50 to 10000 
neurons each. They note that individual groups of neurons can 
neither be too specific in their responses to stimuli nor can they be 
too general; in the former case, it is impossible to have, in the brain, 
enough groups to handle all the possible stimuli, and in the latter 
case, the groups cannot discriminate between stimuli.

Reeke and Edelman’s system differs from simple competitive 
learning in that the competitors are not individual neurons, but 
rather groups of neurons. Each group has internal and external 
connectivity that is determined during development; the strengths of 
synaptic connections can be adjusted afterwards.

Another concept used in the NGS theory is re-entry. This is 
simply the ability for the different neuronic groups to receive inputs 
from one another. This concept encompasses lateral, feed-forward, 
and internal connections, and provides a mechanism whereby 
classifying groups can combine their outputs to form more complex 
classifications.

Re-entry is a very general concept describing any situation of 
combining outputs or of feedback, that is, the fact that the motor 
activity of the organism affects what the organism is seeing as a form 
of re-entry.

Reeke and Edelman cite evidence supporting the NGS theory. 
Growth patterns of neurons do not seem to have their connections 
specified by genetics, and different individuals have different 
patterns of connectivity.

They have built three automata, named Darwin I,II and IQ. 
They have built each system from repertoires, each of which is a set 
of cells, consisting of (up to) several layers. Each repertoire has its 
own fixed connectivity, but synaptic strength that can vary over 
time. Reeke and Edelman's third automaton, Darwin III, which we 
discuss here, differs from most connectionist systems in that it 
actually has a simulated motor component, consisting of a multi
jointed arm and a moveable head.

The automata receive their input in the form of a retinal 
array. The arm can actually move objects that are in the visual field; 
the head movements perform translations of the field. There is no a
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priori information given about the classifications of the stimuli. 
Reeke and Edelman claim that this distinguishes their system from 
other Al and connectionist systems, but this claim is false: all 
unsupervised learning methods operate without any external 
information.

They designed into their system feature-detecting elements. 
The features that are useful are the ones that long processes of 
selection have shown to be useful. The systems are set up so that the 
networks can adjust their synaptic strength based on the adaptive 
value of a particular response or behavior. Darwin III is divided 
into two parallel repertoires, Darwin and Wallace. For each 
stimulus, Wallace matches it to the closest prototype, based on the 
correlation of various features in the stimulus. Darwin provides a 
unique response for each stimulus; Wallace provides the same 
response for all the objects in a given class, and thus performs 
categorization. Darwin and Wallace are intended to be two sample 
modules; many other parallel channels would be needed in a real 
brain simulation. Each of these channels has its own sampling of the 
input. Each vof their two networks is organized in a hierarchy, in 
which cells higher up in the hierarchy respond to increasingly more 
complex features, as in a multi-layer perception.

The specific response of the Wallace subsystem in Darwin III 
is used to guide the systems along the edges of connected areas in the 
stimulus. It uses sensory neurons in the arm to detect continuities in 
objects so that it can trace them.

The two repertoires are connected to one another only at the 
higher levels. It is necessary that they not be connected on the lower 
levels in order for each repertoire to serve as an independent 
perceptual agent. Each repertoire has its own connectivity, 
determined by its functionality. They use a Hebbian scheme to 
modify connection strengths. A connection is strengthened when 
both its inputting and outputting neurons are firing above a given 
threshold. They also have a mechanism for weakening connections 
when their input or output neurons are not responding so that all 
connections do not eventually saturate.

They note that their system is capable of four basic processes: 
categorization, recognition, generalization, and association. The 
Wallace subsystem does categorization by means of a unique output 
for each class of stimuli, but they state that it does not do naming, in 
that it does not use a conventional symbol for the category. Of 
course, the output itself could be considered a symbol.



90 Neural Network Methods for Learning and Relaxation

Recognition, as they describe it, is a process of gradually 
strengthening responses to stimuli which the system has seen before. 
Their system becomes habituated to stimuli in this fashion.

The Wallace subsystem is capable of generalization, which is 
the ability to classify heretofore unseen stimuli. It gets this ability by 
the way it classifies stimuli, which is by correlating features. 
Wallace can give input to Darwin so as to make Darwin's responses 
to similar stimuli more similar over time. Association occurs in 
their system when a stimulus evokes a response associated with 
another stimulus in the same category; Wallace's categorization 
abilities coupled with Darwin's recognition capabilities produce this 
associative behavior.

Reeke and Edelman claim that these four basic processes of 
recognition, classification, generalization and association must 
precede "more conventional learning" in any learning process; in 
other words, they are prerequisites for more complex learning (such 
as, perhaps, language learning, or learning of complex skills).

They feel that their theory indicates that object motion is 
particularly important in learning how to discriminate objects; if 
objects did not move then it would be difficult, in the absence of 
prior knowledge, to tell where one object began and the other one 
ended. Of course, Reeke are Edelman were not the first to recognize 
the importance of object motion in region segmentation and object 
recognition; researchers in computer vision have attempted to make 
use of this information for quite a while (Cohen & Feigenbaum, 
1982).

The performance of Darwin III is as follows: visual layers of 
cells are connected to motor layers of cells controlling the "eye". 
Initially all the connections can be amplified by selection. This 
amplification is related to the extent to which a stimulus is centered 
on the retina. Thus the system rapidly learns to center any object 
that is presented to it, and then learns to recognize and categorize the 
object. The eye tracks the stimulus by always keeping itself in the 
center of the moving stimulus. Since the eye always directs itself to 
the center of the stimulus, and keeps itself there, the system is able to 
perform position-independent classification and recognition. The 
system then becomes habituated to the stimulus, and this allows the 
eye to wander off and become fixated on another stimulus.

The question of what proportion of the neuronal groups would 
actually prove functionally useful in real problems remains open.
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Reeke and Edelman admit this, but they cannot say what this 
proportion would actually be. One might think that if the neuronal 
groups were relatively unstructured prior to learning a large 
proportion of them might learn no function at all. This is an issue 
which would have to be addressed in experiments. Reeke and 
Edelman point out that if some of these neuronal groups turn out to 
have the same functionality, then this could benefit the organism in 
the case that some of them failed to function. They point out that 
although their system may require a large number of units, the time 
latencies are less than a system performs relaxation. They urge 
researchers in AI to adopt more biologically-motivated models, as 
opposed to models drawn from physics, such as Hopfield's, or those 
drawn from more formal ideas of what intelligence is, such as those 
found in traditional symbol-processing AI. Of course, many people 
would agree with Reeke & Edelman that more attention needs to be 
paid to biology. Unfortunately, little is known about brain 
architecture, on the level of cellular connectivity, outside the sensory 
and motor systems.

2.20. Genetic Algorithms
Many problems that have been studied using neural networks 

can be viewed as optimization problems. For instance, many 
networks, such as those wired with back-propagation, that compute 
input to output mappings have the goal of finding the optimal set of 
weights to best compute this function. They search a space of 
solutions to find the optimal one, in this case a weight space.

Another class of algorithms that do a stochastic search on a 
solution space are the genetic algorithms, invented by Holland 
(1975). Like the NGS theory of Reeke and Edelman, these 
algorithms are directly inspired by biological evolution. In a genetic 
algorithm, there is a population of bit strings, called chromosomes. 
The population changes over time. Each bit string encodes a solution 
to the particular problem being attacked. One problem-specific 
method is used to compute the fitness (or "goodness", or quality) of 
each bit string, that is, how good a solution it is to the problem at 
hand. Those bit strings with higher fitnesses will be allowed to have 
proportionally more "children" than those with lower fitnesses.

Children are formed by crossover between the two parents, so 
that a child would be formed by taking some bits from one parent 
then some from the other, then some from the first, e.g., bits 1-10 of
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the child are bits 1-10 of one parent, bits 11-20 of the child are bits 
11-20 of the other parent, etc. There is also a mutation rate; some 
bits in each child are randomly set. Because more fit individuals 
reproduce more, the population will see an increase over time of the 
average fitness of its individuals.

To illustrate this class of algorithms, we consider work done 
by Axelrod (1987) on the Prisoner's Dilemma, a classic problem in 
game theory, using a genetic algorithm. In the Prisoner's Dilemma, 
there are two prisoners who are suspected of working together on a 
crime. Both are independently offered the opportunity to turn stool- 
pigeon. If neither one turns State's Evidence, they both get a light 
sentence. If only one of them becomes a stool-pigeon (defects) he or 
she goes free, and the other gets a stiff sentence. If they both try to 
become stool-pigeons, they both go to jail, and serve a moderate 
sentence. This poses a dilemma because it always pays to defect, no 
matter what the other person does. But if both people defect, they do 
worse than they would if they cooperated.

Axelrod held a tournament in which the game was the iterated 
Prisoner's Dilemma, in which different strategies competed in a 
round-robin tournament to see which one was most successful. The 
iterated Prisoner's Dilemma is simply the Prisoner's Dilemma 
repeated over and over again, which allows each player to base his 
or her behavior on the history of his or her interaction with an 
opponent.

Many people submitted strategies to the tournament, some of 
them very complex, yet a simple strategy won, dubbed TIT-for- 
TAT. TIT-for-TAT cooperates on the first turn, and does whatever 
the opponent did on the previous turn in all subsequent turns. After 
the first tournament's results were announced, a second tournament 
was held. The contestants in the second tournament were aware of 
what the TIT-for-TAT strategy was, and that it had won the first 
tournament. Despite this, TIT-for-TAT won the second tournament 
as well; people were unable to construct a strategy to beat it.

Axelrod constructed the following genetic algorithm for this 
problem. At each move, each prisoner can cooperate with the other 
prisoner (C) or defect to the state (D). If the previous three moves 
are taken into account, the algorithm must deal with 64 possibilities, 
since there are four possibilities at each move (2x2), and therefore, 
in three moves there are A? = 64 possible combinations. Thus a 
strategy can be specified by giving a string of 64 Cs or Ds (bits; 
0=C, 1=D) indicating which action should be taken in each of the 64
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possibilities. Also 6 bits are devoted to the strategy's hypothesis of 
what the three moves that might have preceded the start of the game 
were, for a total of 70 bits.

The space of possible strategies is therefore huge; there are 
about 270=1021 strategies. The genetic algorithm searches this space 
very rapidly.

Axelrod implemented a genetic algorithm with a population 
size of 20 individuals. Games consisted of 151 moves. In each 
generation, each individual met eight representative strategies in 
games. These representative strategies were chosen by the fact that 
play against them accounted for 98% of the variance in the 
performance of the other strategies.

The populations were initially random, but they evolved—in 
50 generations—into populations whose median individual, that is, 
the individual that was median in performance, achieved 
performance that was comparable to TIT-for-TAT. 40 runs were 
made of 50 generations each. In 11 of these runs, the median 
individual actually did better than TIT-for-TAT by taking advantage 
of the weakness of one of the eight representatives, and by 
breaking—under particular conditions—the motto of the TIT-for- 
TAT strategy, which is: never be the first to defect.

He tried the same simulation without sexual reproduction, so 
that only one parent contributed to the genes of the offspring. The 
genetic algorithm still worked, but not as quickly—or as 
effectively—within a given span of generations.

He also tried having the individuals in the population compete 
against one another. Initially this leads to a decrease in cooperation, 
but eventually this trend reverses itself, and the population becomes 
more and more cooperative; over time, there are fewer and fewer 
defections.

In related work, a learning procedure called "iterated genetic 
hill-climbing" has been developed, which combines features of 
genetic algorithms and hill-climbing algorithms (Ackley 1987, Brady 
1985). This algorithm improves on the performance of both 
techniques alone. Mjolsness, Sharp and Alpert (1988; see also 
Mjolsness & Sharp 1986) have introduced a class of "genetic nets" 
with recursively-structured connectivity, in which learning is applied 
to rules rather than weights, and which are based partly on genetic 
algorithms. They claim that these nets scale better to large problems 
than do nets based on weight learning, because they are 
hierarchically structured.
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2.21. Reinforcement Algorithms
Reinforcement algorithms are a class of algorithms for 

learning automata. The automaton takes one of a set of actions based 
on a set of corresponding probabilities, and the environment 
("teacher") responds to the automaton's action by indicating 
"success" (+1) or "failure" (-1). The automaton then adjusts its 
behavior based on this feedback by altering the set of probabilities. 
This is repeated, until, all being well, the automaton's behavior 
converges to good performance.

One specific instance of this class of algorithms is the Linear 
Reward-Penalty (Lr.p) algorithm (Narendra & Thathachar 1974). 
In this algorithm, the set of actions is denoted by (a^ >...,ar ) and the 
respective probabilities for these actions on the kth iteration are 
(Pk>-;Pk).

On the kth iteration, a reinforcement signal bfc, which is either 
-1 or +1 is supplied (but no other input). If the action taken on 
iteration k is ak- ah and bk= 1, then:

pM + oV-pP)
Pkh~(l'a)P(k iorjrH

If bk=-1, then

P&l=(l-b)P{l }
P k l l ^ j  + (^tyPk* for j* i

This notation is taken from Barto and Anandan (1985). Thus 
this algorithm increases the probability of an action that is successful 
by increasing it by some fraction of the difference between it and 
one, and decreases the probability of all the other actions. In the 
case of the action's failure, its probability is decreased and every 
other probability is increased, a and b are the learning rates of the 
algorithm.

This can readily be translated to a connectionist network. 
There are r units. If unit r fires, this corresponds to action ar being 
taken. The probability density in time that any unit will fire is given 
by the probabilities above. After the one unit fires, the environment
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immediately feeds the reinforcement to all the units, and they reset 
their own firing probabilities accordingly. See Figure 2.16.

This algorithm gets only one bit of information at a time 
from its outside environment. It can learn to adjust its behavior so 
that its responses are constrained in an interesting manner, but it can 
not perform association and classification, two processes of primary 
interest to cognitive science. Barto and Anandan (1985) therefore 
extended it to perform these tasks.

In their first extension, which 
they call associative reinforcement 
learning , the environment provides 
not only the reinforcement, but an 
input vector xk on the kth iteration 
as well. The r possible responses of 
the network can be viewed as a 
classification of the set of input 
vectors into r groups; the network 
will learn to make the right 
classification, provided the teacher 
gives consistent reinforcements.
The teacher has an array d(xk, ak) 
which determines what the 
reinforcement to action ak should 
be, given input vector x k • See 
Figure 2.17 for a diagram of the network.

In the case of two possible outputs al  and a2, corresponding to 
a partition of the input into two sets, it is known that the number of 
classification errors of input x is minimized if output a l  is chosen 
for x when P(al/x) > P(a2/x), and a2 is chosen when the inequality is 
reversed. The only trouble is that the system has no way of knowing 
these conditional probabilities (in the case of disjoint sets, one of 
them will always be one and the other zero; in the case of 
overlapping sets, they will both be non-zero for vectors that are in 
the intersection of the two sets).

Instead of these probabilities, they use a vector 6 to 
approximate them, such that 6-x =P(al/x)-P(a2/x). If 6-x is positive, 
al is chosen; if 6'X is negative, a2 is chosen. 6 changes over the 
course of the learning.

Z is defined to be the class label of an input x; if x is in the set 
corresponding to a], then z =1, if a2, then z = -1. It can be shown

recieving reinforcement from the 
environment.
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(Duda and Hart 1973) that if E((frx - z ] )2 ) is minimized (where E 
denotes the expected value), then the error in classification is 
minimized. This makes intuitive sense, since you want O'X to be 
positive when z - 1 and negative when z=-1, and the above formula is 
small under both of these circumstances.

Barto and Anandan use a gradient descent procedure, the 
Robbins-Monro algorithm (Kasyap, Blaydon & Fu 1970). The 
partial derivative with respect to 6 of the above expected error 
formula on the kth iteration of the algorithm is given by:

2[ 6k'*k * Zk]*k 

This is used to adjust 0 in the course of the learning:

Qk+ l =  @k '  Pk[@k'%k '  Zk]%k

The pic are constants which vary over the course of the learning; 
they, at some point in the learning, get progressively smaller, and 
are subject to some formal requirements for convergence (see Barto 
& Anandan 1985 for details).

The components of 9 can be 
interpreted as weights on 
connections connecting each 
component of the input to a single 
perceptron output unit, which 
outputs 1 if its input is positive and 
zero otherwise. (If one unit for 
each of the classes al and a2 is 
desired, the connections can be 
duplicated for a second unit, whose 
polarity is reversed). See Figure 
2.18 for a diagram. This 
interpretation of these equations as 
a neural network applies to the rest 
of our discussion. Input r response

They add an element of Sector x units; output 
randomness to this associative _1 or 1
reinforcement learning algorithm to Figure 2.17. An associative 
create the Associative Reward- reinforcement learning network. 
Penalty (A r .p ) algorithm. Again
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there are two actions ak= 1 and ak=-1, and two reinforcements bk= 1 
and bk=-1. The rule for choosing the action is changed to:

ak= +1 if 9k -xk+Ck > 0
ak- -1 otherwise.

Gk is a random variable whose distribution is known in 
advance. Thus E(akJ9k,xk), the expected value of ak given values of 
9k and xk, is known. The formulas for updating 9 are essentially 
the same as in the Robbins-Monro algorithm given above, with the 
expected value of ak replacing ak itself. A factor A is added to allow 
for differential reinforcement between reward (b=1) and penalty 
(b=-1). In the case of reward we have

Ok+i-Ok-pkl E{aijek,xk}-bkflkJxk 

In the case of penalty

Q k+i=6k-X pk[E  {a/J 6k,Xk} -bkflklxk

If A=0, Barto and Anandan call this the associative reward-inaction 
(Ar-i) algorithm.

They show that the A r -p  algorithm reduces to other 
algorithms under certain conditions. If the input vector x  is a 
constant, and the random variable has a uniform distribution over 
the interval (-1, 1), the A r_p algorithm reduces to the Lr_p  
algorithm. If the random variable is always zero and A=l, the Ar_p 
algorithm reduces to their two-category supervised learning 
classification algorithm given above.

The A r -P algorithm 
reduces to the perceptron 
convergence procedure if the 
expected value E(akJ9k,xk) is 
replaced by ak, and the 
distribution of £& is given by 
a step function, although it 
will not necessarily converge lnPutVectorX

to a solution. In the case in Figure 2.18. Interpretation of 6 as a 
which the input vectors are perceptron.
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all unit basis vectors, the Ar-p algorithm functions as a look-up 
table.

They show that under the conditions that (1) the input vectors 
are linearly independent (2) they each occur with finite probability
(3) the random variable's distribution is continuous and monotonic
(4) the sequence pk satisfies certain conditions which amount to it 
eventually decreasing to zero, then the weight vector converges, 
which implies a certain formal type of optimality.

They implemented the Ar.p algorithm for use in two tasks, 
comparing it to the non-associative LR.p algorithm and the selective 
bootstrap algorithm (Widrow et al. 1973), which is another 
algorithm that does associative reinforcement learning. As I 
decreased, the learning rate of the Ar.p algorithm decreased, but it 
approached an asympotote that was more nearly optimal than the 
selective bootstrap algorithm. The Lr-p algorithm, being non- 
associative, did not detect the input vectors, thus its expected success 
probability remained at a steady 0.5, rendering it (and all other non- 
associative algorithms) useless for associative learning. In fact, they 
could have predicted this behavior without bothering to implement 
it.

Both tasks involved just two input patterns (x(l) and x(2))md  
two actions (-1 and +1). For task 1, the success probability matrix d 
for task 1 was given by d(x(l) , -1) = 0 .8, d(x(l), +1) = 0 .1, d(x(2)
, -1) = 0.2, d(x(2), +1) = 0.9. In this task, the selective bootstrap 
algorithm outperformed the Ar-p algorithm (in terms of percent 
success), because the success probabilities, with respect to each 
action, are far apart and, for each input, one is on each side of 0 .5. 
In the (more difficult) task 2, where d(x(V, -1) = 0.2, d(x(l),+1) = 
0.4, d(x(2), -1) = 0.9, d(x(2), +1) = 0.6, the Ar .p algorithm 
outperformed the selective bootstrap algorithm, whose performance 
oscillated. They provide a mathematical account of why the selective 
bootstrap algorithm will not converge, along with other algorithms 
in its class, for "unclear" tasks like task 2.

2 .2 2 . Temporal Difference Methods
Sutton (1988) discusses a type of learning mechanism, which 

he calls a temporal difference method, in which credit assignment— 
which, with neural networks, corresponds to the adjustment of 
weights—is based on the difference between temporally successive 
predictions of the correct output instead of, as in back-propagation
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and other error-based methods, the difference between the predicted 
and desired outputs.

This method is applicable to the problem of learning to 
predict, that is, using past experience to predict the future behavior 
of a system like the weather, a game, or the economy. Sutton claims 
that temporal difference methods require less computation time than 
ordinary methods and converge faster to an optimum, for a class of 
learning problems that Sutton refers to as multi-step problems, in 
which the correctness of a particular prediction is not revealed until 
several steps after the prediction. He gives the problem of predicting 
Saturday's weather on Tuesday as an example of such a multi-step 
problem. Although temporal difference methods are only applicable 
to multi-step problems, Sutton argues that most real-world problems 
are of this type. For instance, he points out that the last year's 
predictions about this year's economy are validated or invalidated 
gradually as this year passes.

Sutton formalizes a learning problem as follows: x j ,  x2, x3 
xt is a sequence of observations (for a connectionist network, 

inputs), w is a vector of weights, and P i, P2, P3 Pt is a sequence 
of predictions (for a network, outputs). Sutton proves that the 
weight update rule

t
Awt=a(Pt+i-Pt)]r VwPk 

k=l

where a  is the learning rate and Vw is the gradient operator with 
respect to the weight vector, so that VwPk is the vector of partial 
derivatives of Pk with respect to each component of w, is precisely 
equivalent to the Widrow-Hoff delta rule, the perceptron 
convergence procedure (see section 2.4). Sutton refers to this 
algorithm as TD(1), the first-order temporal difference procedure. 
By extension, he defines the family of learning procedures TD(X) by

t
Awt= a(Pt+i~Pt)X  ^  wPk 

k=l

where gradients into the past are weighted by decreasing factors of 
A. Thus recent gradients are favored over older ones. Typically A 
ranges between zero and one.
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Sutton gives an example of how the temporal difference 
methods can lead to better performance than ordinary methods. 
Suppose we have a state A which leads to state B which in turn lead 
to states C and D. C, which is a losing state, is reached from B 90% 
of the time; D, a winning state is reached from B 10% of the time. A 
supervised learning method would associate state A with either state 
C or state D, so would either associate it with fully winning or fully 
losing, each time state A and either states C or D shows up. The 
temporal difference method always will associate A with state B, and 
will more quickly converge to the 90% goodness value associated 
with B. This is, as Sutton points out, not a proof that temporal 
difference methods are better; one can construct scenarios in which 
supervised learning works better, but Sutton believes these are the 
exceptions.

In order to more rigorously illustrate the superiority of 
temporal difference methods over standard supervised learning, 
Sutton chose a simple problem involving a random walk through a 
linear sequence of states A-G  as shown in Figure 2.19. In this 
problem, A and G are final states; from each of states B-F there is an 
equal probability (1/2) of a move to the state immediately preceding 
and a move to the one immediately following it in the alphabet. All 
walks start with state D; one example of a walk is DEDCDCBCBA.

Figure 2.19. A network of states used for random walks by Sutton (1988). D is the 
starting state. Reprinted by permission.

The problem that Sutton chose to have his systems leam was 
the probabilities, for each of the states B-F, that the system will end 
up in state A or G . Each walk is memory-less; thus these 
probabilities are constant during each walk. This was formalized as 
follows: z = 1 denotes a final state of G, and z = 0 denotes A. xi in 
the formalization discussed above is the z'th state of the walk; the 
predictions Pi are the expected values of z at each xi. The learning 
algorithms TD(X) were trained on 100 training sets of ten sequences 
(walks) each. Each training sequence was presented repeatedly until 
convergence. Values of X=1 (Widrow-Hoff), and A= 0, 0 .1, 0.3,
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0.5, and 0.7 were used. The learning rate a  was also varied, with a  
taking on values of 0 , 0 .1, 0.2 ,..., 0 .6.

Based on the root-mean-square error computed between the 
ideal predictions, which can easily be shown to be 1/6, 1/3, 1/2, 2/3, 
5/6 for states B -F , and the asymptotic prediction in a training 
sequence, averaged over the 100 training sequences presented to each 
algorithm, he found that the error (for the best value of a  for each 
X) declined rapidly as X was lowered below 1, and was optimum at 
X=0. X=0 corresponds to the case where the current prediction is 
compared only to the previous prediction. This is due to the fact, 
which Sutton proves, that TD(0) minimizes the error on trials 
presenting after training, whereas Widrow-Hoff (TD(1j) minimizes 
error during training.

He also did a second experiment in which each training 
sequence of 10 walks was presented to each algorithm just once. 
Here, he found that the best value of X was close to 0.3, again 
comparing values of X on the basis of their respective error- 
minimizing values of a. The reason that the optimum X exceeded 0 
is as follows: because TD(0) takes quite a bit of training to adjust the 
prediction values of states occurring earlier in a sequence (walk), 
whereas TD(X) with X>0 propagates the adjustments backwards 
faster, within a single learning trial.

Sutton extended the TD(X) class of algorithms to several 
related problems. His first extension was to the case in which the 
algorithm, instead of predicting the eventual outcome of a sequence, 
predicts the remaining cost of the sequence, if a cost function is 
associated with each step. His second extension was to modify TD(X) 
so that the weight vector is modified during each sequence, instead of 
just at the end. Finally, he extended the class of algorithms to handle 
the problem of, at each point in the xt, making a prediction for some 
fixed amount of time later. In this case, for instance, one can use the 
fact that the prediction you make of Monday's weather on the 
preceding Monday should be as similar as possible as the one made 
on the preceding Tuesday. For details, see Sutton (1988).

Sutton's (1984) adaptive heuristic critic (AHC) learning 
method is closely related to the TD(l) class of algorithms. The AHC 
algorithm is used for predicting cumulative outcomes, such as the 
total future return on an initial investment. The trouble is that this 
sum is often infinite, so that is often discounted as follows: if the 
income generated at time t is ct, the discounted sum is
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zt= y ,  fat+k+i 
k=0

where /ranges from 0 to 1, and is called the discount rate. If Pt is 
used to predict zu then it is readily shown that Pt=ct+1+yPt+l-  The 
mismatch between successive predictions is therefore (ct+l+yPt+1)- 
Pt. The AHC method uses this error to adjust the weights in a 
similar manner to TD(X), as follows:

t
Awt=cx(ct+i+']/Pt+i~Pt) 5  ̂A* kVwPk

k=l

Here the error term from TD(X), (P t+ 1 - Pt), is replaced by the 
discounted error (c t+ l+ yP t+ l)-P t• Anderson (1986) used a variant 
of this AHC algorithm in his work on problem-solving in the 
connectionist paradigm (see the next section).

2.23. Problem Solving Using Reinforcement and 
Back-propagation

Anderson (1986a) tackled, in his Ph.D. dissertation, the topic 
of "Learning and Problem Solving with Multilayer Connectionist 
Systems". He uses feed-forward networks with no recurrent 
connections and uses Rumelhart and co-workers' back-propagation 
algorithm and Barto and co-workers' reinforcement-learning 
algorithms, and variants of these that he developed, to a variety of 
tasks that involve the learning of new features. He also developed an 
algorithm that combines aspects of back-propagation with Sutton's 
AHC algorithm for learning evaluation functions (see the previous 
section) and a reinforcement-learning algorithm to learn search 
heuristics for problem solving. He applied this algorithm to the 
problem of balancing a pole on a cart, and to the Towers of Hanoi 
puzzle.

In a connectionist system a concept can be viewed as a region 
in an n-dimensional feature space, defined by the values of the inputs 
to the system. This is a definition that Anderson borrows from 
Utgoff (1986); if the stimuli, in more traditional AI, are strings of 
symbols, then a concept is a set of strings, which is a region (not 
necessarily connected) in the space of possible strings. Following 
this, the exclusive-or task is the task of learning to separate the bit
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vectors (1 0 ) and (0 1), which are assigned the value 1, from the bit 
vectors (11) and (0 0), which are assigned the value 0. As Minsky 
and Papert (1969) have shown, this classification task cannot be 
accomplished with a two layer perception. As we have seen, it 
requires at least three layers.

Anderson did not choose the exclusive-or function for his 
exploration of learning discriminant features, because he wanted a 
classification task that required more than one hidden unit for its 
solution. He suspected that algorithms that performed well learning a 
single feature would not necessarily perform well when required to 
learn the behavior of more than one hidden unit. The function that 
he chose for a more complex classification task was a multiplexer 
function which had two address bits and four data bits in the input 
vector. The two address bits serve as a binary number indicating 
which of the four data bits to route to the output. The system must 
learn to route the correct bit. In terms of concept learning, as 
outlined above, the problem is of dividing the set of possible input 
vectors into two sets, one for which one is output, and the other for 
which zero is output.

Anderson used the perception convergence algorithm 
(Rosenblatt 1961) to learn the multiplexer function. He defines the 
error on iteration k, ek(t) as:

Z  (d j( t ) - y j ( t ) )
jeO

where O is the set of output units, t is the time, dj(t) is the desired 
output of unit j  and yj(t) is its actual output. He sums this ek(t) over 
all the s time steps of an individual convergence procedure, and then 
averages this sum over a series of runs to arrive at a performance 
measure

! * = r E Z ek<‘>
k—1 t=l

Since fi treats all the time steps of a run equally, Anderson 
developed a second performance measure v which accounts for 
improvement toward the end of a run. The way this is measured is 
by freezing the weight values at the end of the run and then 
presenting the system with all possible inputs (in the case of the
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multiplexer there are 26= 64 of these) and summing the errors for 
all 64 of these to obtain the total error hk for run k:

h k = i Z  Z \ d xj-yxj\
xeX jeO

where X  is the set of 64 possible inputs, J  is the set of output units, 
dxj is the desired output of unit j  on input x, and y is the actual 
output. This is averaged over a set of r runs to obtain

v = f i >
k=l

v is a measure of the quality of a solution, and jx is a measure 
of how fast the system found a solution.

The m u ltip lex er in p u t  v e c to r  d e s ire d  o u tp u t  
function is not linearly (0,0,0,1,0,0,0.5) 0
separable using a single (0,0,1,0,0,0,0.5) 1
linear threshold perception (0,1,0,1,0,0,0.5) 1
unit, as Anderson readily (0,1,1,0 ,0,0,0.5) 0
shows. He considers the four 
vectors shown in Table 2.1, 
with their desired outputs, 
and notes that, for example, the relationship between components 
two and three is an exclusive-or. The exclusive-or cannot be handled 
by a two-layer perceptron, which therefore cannot handle the 
multiplexer function either.

In order for a single unit to handle the classification task, 
additional inputs must be added. If the input is a]a2dld2d3d4 (two 
address bits and four data bits), then the function that is to be 
computed is

Table 2.1. Multiplexer function used by 
Anderson (1986a). Reprinted by permission

ajci2dj va 10-2̂ 2 VQî 2^3 vajcfycb

The four inputs that are added (new features) are therefore the four 
components of this "or" equation; each of them corresponds to a 
particular configuration of the address bits and the data bit that that 
configuration selects.

In addition to the original input pattern a]a2d]d2d3d4  and 
this pattern augmented by the four additional features mentioned 
above, Anderson considered a third representation in which the
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input vector had 64 components and each stimulus was represented 
by a vector with exactly one bit set to one and the rest set to zero. 
These are called, in vector algebra, the 64-bit unit basis vectors, and 
there are 64 of them.

Thus 64 6-bit numbers in base two are effectively replaced by 
64 numbers essentially in base one. The perception convergence 
algorithm has no problem classifying these inputs as zero or one, 
since it has a separate weight associated with the connection to each 
of the 64 inputs.

As one might expect, the 64-input model converges faster 
than the six-bit/four additional features model. The original model, 
without the four additional features, does not converge at all, as 
expected. The convergence graphs are given in Figure 2.20. The 
new feature representation gradually comes to learn the proper 
categories, whereas the 64-component model exhibits perfect 
performance as soon as it has been presented with all 64 possible 
inputs, since it is functioning as a look-up table. This is interesting 
only as an extreme example of presenting the system with the most 
readily interpretable information.
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Figure 2.20. Convergence graphs of three models on the multiplexer task of 
Anderson (1986a). Reprinted by Permission.

Anderson points out that learning new features is most useful 
if it helps the system to group together those inputs that require the 
same output; in other words, a new feature should make input 
vectors that belong in the same cluster seem more similar. 
Anderson did a series of experiments in which a perceptron was 
made to learn the association between the 16 unit basis vectors 
composed of a 16-bit input each, x \,  x2 ,■■■, *16- There was a 4-bit 
output; x l  ,..., x5 got output (1010), x<5 ,•••> *10 got output (1111)

T I H E  S T E P S
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and x 12 x!6  got output (0101). His system learned these 
outputs with the unit basis vectors alone as input, and augmented by 
two- or three-bit class labels added to the input; the three-bit class 
labels were (001), (010) and (100), and the two-bit ones were (01) 
(11) and (10).

He handled the learning process somewhat differently in this 
example. The input units were completely connected to the four 
output units, but he trained the system in two phases. In the first 
phase the first two output units were trained; in the second phase the 
second two units were trained, starting with the weights as they were 
at the end of the first phase. The purpose of this is to show how the 
learning of features that can aid in input classification (i.e. the first 
two bits of the output) can facilitate further learning. The new 
features mentioned above were not added until the start of phase 2.

In the absence of the new features, learning proceeds at the 
same pace in phases 1 and 2, f i l=  ji2= 22 (|i is the measure of the 
speed of convergence mentioned above). With the three bits added 
in phase 2, i±2 was equal to 4, and with the two bits added, jX2 was 
equal to 3. The reason the two bits performed better than the three 
bits is because they were the same as the first two bits of the desired 
output.

Anderson compared 
the performance of a variety 
of algorithms on the 
multiplexer task, using a 
three-layer network (see 
Figure 2.21) containing input 
units, four hidden units and 
an output unit. Error back- 
propagation and Barto and 
Anandan's (1985) Ar -p 
algorithm were best and 
second-best respectively in terms of speed of convergence. Various 
modifications of the Ar-p algorithm were designed in order to get 
more accurate assignment of credit or blame to the hidden units 
beyond the global reinforcement signal, but, even with these 
variations, its performance still did not surpass the error back- 
propagation algorithm. This is not surprising, since back- 
propagation is given more information than the Ar.p algorithm. 
Other algorithms that searched the space of weights for minima

Figure 2.21. Three-layer network used by 
Anderson (1986a) for his multiplexer task. 
Reprinted by permission.
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were tried, but their results were even worse. The perceptron 
convergence procedure did not converge to a solution at all, as 
expected.

2.24. Problem-Solving Networks
For problem-solving, Anderson uses networks that combined 

the error back-propagation algorithm with the AHC algorithm of 
Sutton (1984). His first network, the evaluation network, is used to 
learn an evaluation function for a general strategy learning task. 
The second network is used to learn search heuristics formalized as 
the selection of an action from a set. Both of these networks are 
three-layer.

The evaluation network is contains of mh hidden units and one 
output unit; the action network has mh hidden units and mo output 
units. Each unit in both layers of units receives all of the n inputs 
from the environment; each unit in the output layer (in the case of 
the evaluation network, just the single output unit) receives all of the 
n inputs plus the mh outputs of the hidden units.

The hidden units produce output which is a logistic function 
of the sum of their weighted inputs. In the evaluation network, the 
output of the output unit is simply the weighted sum of its inputs. 
The action network hidden units behave the same as those of the 
evaluation network; again, their activation is a logistic function of 
the weighted sum of their inputs. In the output units of the action 
network, noise is added to the weighted sum of their inputs. The 
noise is distributed according to the distribution function

The output units are organized in winner-take-all networks; the 
output unit receiving the most input (including noise) wins the 
competition, and output one; the rest of the units output zero.

To train the evaluation network, Anderson used the heuristic 
reinforcement function f(t) defined by Sutton (1984). This is given 
by r(t) = 0 if the system at time f is in a start state,

r(t) = r(t)-p(t-l,t-l) 

if the system at time t is in a goal or failure state, and
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r(t) = r(t)-yp(t,t-l)-p(t-l,t-1)

otherwise. The p's are the outputs of the output unit of the 
evaluation network at time t and t-1; p(t,t-l)  is computed using the 
weights at t-1 to avoid having a change in weights affect the 
heuristic value, beyond the environment itself. 7  is a constant called 
the discount rate, between 0 and 1; r(t) is an (externally supplied) 
reinforcement value.

The second two terms in r(t) measure the change in the 
heuristic value of p. Thus if p  has increased, the effect of the weight 
change formula is to decrease the weights from those units with 
negative potential and to increase those with positive potential. The 
opposite occurs if p  has decreased. Therefore credit is assigned to 
different units based on the strength and magnitude of their 
potential. The discount rate allows the algorithm to "ignore" a 
certain rate of increase in the evaluation function, that is, a rate 
equal to 1/y. This is appropriate since one hopes that the evaluation 
function will be increasing over time.

Thus r(t) measures both the external reinforcement and the 
change in heuristic output value; it is used to update the weight 
values of the network. The equation used to update the weights or 
connections from unit i in the input or the hidden units to the output 
unit is:

vi(t) = vi(t-l )+fir(t )yi( t-1 ,t-l)

where v; is the weight, yi is the potential of the hidden or input 
unit i, and is a constant, the learning rate.

Output unit j  of the action network updates its weights 
according to a similar rule:

wij(t) = wij(t-l)+pr(t)(aj(t-l)-E(aj(t-l)/w;z))zi(t-l)

where wij is the weight connecting unit j  with each of the hidden 
units and the input, aj is the potential of the jth action unit, and 
E(aj(t-1 )/w;z) is the expected potential of the jth action unit, given 
the particular values of w and z. Thus the weights are adjusted by 
an amount proportional to the discrepancy between the actual and 
expected values of aj(t-l). The expected value is simply equal to the 
probability that aj will be equal to 1. Unusual actions therefore
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create relatively more change in the weights. The r(t) term allows 
increase in the weights if there is an increase in p.

For the hidden layer of the evaluation network, a variant of 
the error back-propagation network is used, but since we do not 
know the correct output in each case (which is necessary in order to 
use ordinary back-propagation), r is used as the back-propagated 
error. Since the weights in the output layer of the action network 
are adjusted by a term in which the expression playing the role of 
the error is r(t)(aj(t-l) E(aj(t-1 )/w;z)), this expression is what is 
used as the error for the purposes of back-propagation. Anderson 
uses a variant of back-propagation developed by Sutton (1985), in 
which the sign of the weight instead of the weight itself is used, to 
decrease the algorithm's sensitivity to its learning rate.

Anderson applied his evaluation and action networks to two 
strategy learning tasks. The first of these was the pole-balancing 
task, in which a pole is attached by a hinge to the top of a cart and 
the system must move the cart so as to keep the pole balanced. The 
second of these was the Towers of Hanoi puzzle. In this puzzle, you 
have three pins and n disks. The disks increase linearly in size from 
1 to n, and initially they are stacked in order on the first pin, with 
the largest on the bottom. The goal is to move all the pins so that 
they are again stacked in order on the third pin. The disks may be 
moved one at a time, and a larger disk may never be placed on top 
of a smaller one.

The problem is readily solved with the following 3 step 
recursive algorithm: (1) move n-1 disks recursively from pin 1 to 
pin 2 (2) move the largest disk from pin 1 to pin 2 (3) move n-1 
disks recursively from pin 2 to pin 3. Steps 1 and 3 are recursive 
calls to the algorithm. The Towers of Hanoi puzzle has been studied 
from the point of view of state space exploration in AI using search 
heuristics (e.g. Langley 1985) and human strategies have been 
modeled (Anzai & Simon 1979).

The state of the Towers of Hanoi puzzle may be completely 
specified by a vector of length n which describes for each disk 
which peg it is on. (The order on each peg must always be from 
smallest to largest as one goes from top to bottom on the peg.)

In Anderson's system there are three reinforcements r(t) 
provided to the action and evaluation networks. If the goal state (in 
which all disks are on pin 3) is reached, r(t) is set to 1. A 
reinforcement r(t) of -1 is given if a two-step loop is selected; that 
is, if the system chooses an action which reverses the previous
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action. This is to prevent the system from making such loops. This 
rloop(t) is given only to the action network, not the evaluation 
network, since we do not want the evaluation of a state to go down 
simply because it was visited in a loop. Finally, a constant 
reinforcement r(t) of -0.1 is given on every time step that does not 
lead to a goal state. This is to encourage the system to select short 
paths to a goal state.

For his experiments, he used a three-disk system. The input 
to the evaluation network is the state of the puzzle encoded as nine 
bits; for instance, the state (123) is encoded as (100 010 001). (This 
is the state in which disk 1 is on pin 1, disk 2 is on pin 2, and disk 3 
is on pin 3.) Actions are encoded by six bits; one for each of the six 
possible actions (disk movements, which can each be expressed as 
ordered pair of pins). The action network receives as input the 
current state and the previous two actions, for a total of 9 + 6 + 6 = 
21 bits.

He first ran simulations of his system with no hidden units; the 
equations given above for adjusting weights were used, with the 
single change that r(t)+rloop(t) was substituted wherever r(t) was 
found. The system with no hidden units usually learned to solve the 
puzzle with paths that were far from optimal; on average it found a 
path to a solution of length 30, whereas the optimum number of 
steps is seven. In the best example, which learned a path of length 
nine, the evaluation function learned to evaluate more highly states 
in the search space that were closer to the final state.

The three-layer system performed much better: Only the 
evaluation network was three-layer; the action network remained 
two-layer. In nine out of the ten runs in which Anderson trained the 
network, it learned the optimal path of length 7. He used parameter 
values that were arrived at by testing 20 sets of parameters to 
determine which arrived at the best performance. It learns an 
evaluation function such that if there are two states A and B such 
that a move from A to B moves toward the goal state, then B is 
evaluated higher than A. He analyzed how the function is 
constructed in terms of the contributions of the hidden units, many 
of which are specialized to evaluate various portions of the state 
space.

One of the main features of the action network is the 
development of strong negative connections between actions and 
their inverses. There are also connections that cause the selection of



Neural Networks in Artificial Intelligence 111

a particular action on one step to make the selection of another 
particular action on the next step more probable.

One problem with this technique of learning good behavior on 
heuristic search tasks is the learning time. It took 100,000 learning 
steps to learn an optimal solution to the three disk Towers of Hanoi 
problem, which is a toy problem with a small search space. Since 
search spaces for more complex problems, such as adversary games 
like chess or reversi, tend to be large, training times and numbers of 
hidden units required might be unworkable. More work needs to be 
done along these lines.

2.25. Extensions to Learning Algorithms
A number of researchers have developed extensions to the 

basic back-propagation algorithm given in section 2.12. For 
instance, Sandon and Uhr (1988) have developed a technique for 
dealing with the fact that back-propagation sometimes gets stuck in 
local minima in weight space. Ballard (1988) has also developed a 
technique for dealing with local minima. Kruschke (1988) discusses 
techniques for minimizing the number of hidden units required to 
solve a given problem. McCloskey and Cohen (1987) demonstrated 
the tendency of back-propagation and other connectionist algorithms 
to "forget" old memories, and Hinton and Plaut (1987b) have 
devised a scheme to cope with this tendency, substituting new 
knowledge for it. I discuss some of these techniques in more detail 
in the following sections.

Back-propagation and related procedures are prone to the 
problem of poor convergence in some cases. Hinton (1987) gives the 
example of the case in which the error surface has steep walls 
surrounding a relatively flat ravine. Various methods have been 
devised to deal with such problems. (Widrow & Steams 1985, Amari 
1967, Parker 1987, Plaut & Hinton 1987)

One big problem with back-propagation is that it is 
biologically implausible. No mechanism has been found whereby 
neurons transmit error signals backward. One response to this is that 
back-propagation simply finds interesting networks that biological 
evolution may have found by other means. Some authors have 
suggested methods to make back-propagation more plausible, e.g. 
Parker (1985), Hinton & McClelland (1987a).
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2.26. Escaping From Local Minima
Sandon and Uhr (1988) introduced a new technique for 

escaping from the local minima that gradient search methods such as 
back-propagation often lead to. Typical methods for escaping from 
local minima are: to add noise (such as in the Boltzmann machine), 
or to jolt the weights from their position in weight space, to escape. 
Sandon and Uhr suggest the use of what they call a "local interaction 
heuristic", adapted from ideas in computer vision. Hierarchical 
methods of visual processing (Uhr 1972, Tanimoto 1978, Dyer 
1982) make use of the fact that much of the information that you 
want to integrate can, at any given level of resolution, be found in a 
local neighborhood of an image point.

Sandon and Uhr point out that this locality principle can be 
applied to the general problem of finding global minima in layered 
feed-forward neural networks. It is based on the idea of clustering. 
The nodes are grouped into local clusters, and the error function that 
is propagated back is modified so as to avoid having two nodes in the 
same cluster respond to the same patterns of activation. Sandon and 
Uhr point out that such redundancy in the functions computed by 
nodes means that a needed feature may not be represented.

They applied this to the 
familiar exclusive-or (xor) 
problem, with the smallest 
feed-forward network (in 
which only adjacent layers 
are connected) that could 
solve this problem (see 
Figure 2.22). In one test- 
case, back-propagation 
converged to the correct 
solution, a global minimum, 
but in another, with a 
different initial setting of 
weights, the network gets 
stuck in a deadlock with the 
two hidden units computing exactly the same function. In this 
second case, they modified the error back-propagated so that the two 
hidden units formed a cluster. Only the unit that would receive the 
largest error from normal back-propagation received the same error 
as under normal back-propagation; the other unit received -1/4 that

Figure 2.22 Networks used to solve the 
exclusive-or problem by Sandon and Uhr 
(1988). Reprinted by Permission.
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value, so that the two units receive signals of opposite polarity, and 
the deadlock is defeated. Using this algorithm "fixed" the second 
test-case, while the correct results were maintained on the first test- 
case. They mention other rules for distributing the errors among the 
cluster; one rule, which set the other unit (that one not receiving 
maximal error) to +1/4 the value of the maximal unit, still 
converged to a correct response.

They applied their method to several other problems, such as a 
network that rotated three bits one bit to the left, in a circular 
fashion, e.g. 101 to Oil, and a two-dimensional shift network (for 
translating an input pattern). It worked better than standard back- 
propagation for both cases, although the two-dimensional shift 
network, being a more complex network, did not achieve very high 
performance; the best was 59% correct convergence using Sandon’s 
first modified error rule.
2.27. Creating Bottlenecks

Kruschke (1988) has studied the issue of exactly how many 
hidden units are needed to accomplish a given mapping, using back- 
propagation. He gives several reasons why the number of units 
should be reduced; the first is parsimony: both the amount of 
computer space and the amount of complexity are reduced with a 
reduction in the number of units. In addition, with fewer units, each 
unit is forced to compute efficiently; no units are wasted, and it is 
often easier to interpret what each unit is competing. Another 
reason for keeping the number of hidden units to a minimum is that 
generalization performance tends to be better when fewer hidden 
units are present.

The disadvantage of using fewer units is, according to 
Kruschke, that local minima are harder to avoid, and the amount of 
training time is increased. Kruschke refers to the minimum number 
of units that compute a particular function as a bottleneck (since if 
there were any less units, the information would not get through). 
He has devised two methods which result, respectively, in two 
different types of bottlenecks, local bottlenecks and distributed  
bottlenecks. Local bottlenecks are created by starting with many 
units and gradually attenuating away those units that are redundant in 
terms of the representation in the hidden units.

He considers the variant of back-propagation that includes, for 
each unit, a parameter called the gain in the activation rule. The 
activation rule is thus
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ai=f(gineti)

where ai is the activation, gi is the gain and neti is the input 
received by unit i. Kruschke notes that a unit with zero gain has 
constant activation, independent of the input received. Also, as 
Kruschke shows mathematically, since the gain acts as a 
multiplicative factor in the back-propagated error, a unit with zero 
gain also propagates back no error.

The gains are the attenuating factors that Kruschke uses to 
create his local bottlenecks. The gains compete with one another. 
Kruschke considers two units redundant if their weight vectors are 
(nearly) parallel or anti-parallel. Thus, with each adjustment of the 
weights, the gains are also adjusted by

A g i= -y £  cos2Z ( w f , w f )  g f  
i

Thus all the gains are decreasing by an amount that is a 
measure of their similarity of their weight vector to all the others 
based on the square of the cosine of the angle between the weight 
vectors, which is large when the vectors are close to being parallel. 
The most similar nodes diminish each other’s gains by the largest 
amount.

After each epoch of back-propagation, the gain was reversed if 
the length of the weight vector for that particular node has increased, 
and is decreased if it has decreased. Then the weight vector is 
normalized. This way the gain comes to represent the length of the 
weight vector and the weight vector itself is a unit vector indicating 
its direction. This leads to an interaction between Kruschke's gain 
competition algorithm and back-propagation.

He used these algorithms to minimize the number of hidden 
units in the 4-4-4 encoder problem (see also section 2.11), in which 
the 4 unit basis vectors in the set of 4-dimensional binary vectors are 
each mapped onto another member of the set specifically, he used the 
identity mapping, 1000—>1000, 0100-»0100, etc. 4-4-4 denotes 4 
input units, 4 hidden units, and 4 output units. His algorithm 
reduced the number of hidden units required to two by reducing the 
gain of two of the hidden units, thereby creating a 4-2-4 network in 
which the two hidden units that remained after the imposition of the 
bottleneck contained a binary encoding of the input.
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The second approach that Kruschke took to reducing the 
information flow through the hidden layer was the creation of what 
he called a distributed bottleneck. This is based on Shepard's (1962) 
concept of multi-dimensional scaling. What Kruschke did was to 
compute the mean distance between all pairs of weight vectors. Then 
each pair of vectors that were closer to each other than this mean 
were moved closer together, and those that were further apart were 
moved even further apart. This was done in the direction of their 
difference vector. The effect of this algorithm over time is to make 
all the vectors either parallel or anti-parallel to one another.

With moderate amounts of this dimensional compression, the 
network still learned the 4-4-4 encoder, but the learning time was 
increased. It did this, however, by exploring a smaller area in 
weight space, in the sense that pairs of weight vectors tended to be 
closer to being parallel or anti-parallel. Distributed bottlenecks 
reduce the dimensionality of the back-propagation mapping without 
reducing the number of units; thus they retain damage resistance 
associated with redundancy. Kruschke notes that both types of 
bottlenecks are not limited to back-propagation networks, but can be 
created in a similar fashion with other learning paradigms, such as 
that invented by Ackley and his co-workers for the Boltzmann 
machine (see section 2.10).

2.28. Sequential Learning
McCloskey and Cohen (1987) considered the problem of 

sequential learning in connectionist networks. Sequential learning is 
common in people: for instance, as they point out, children learn 
simpler addition facts (i.e., the ones involving smaller numbers) 
before they learn more complex facts. It is possible to train a 
connectionist network to do addition; some representation can be 
made of the two operands in a feed-forward back-propagation 
network with a layer of hidden units, and the network can be trained 
to add them if random input-output pairs are employed in sequence.

They explored the ability of such networks to learn if the 
inputs were not all presented at once, but sequentially. They trained 
networks using both the Boltzmann machine and back-propagation to 
respond correctly to addition problems involving one (e.g., 7 + 1 = 
8). They then took this same network and trained it on problems 
involving two. Almost immediately after commencing training, even
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before the network learned to handle the problems involving two, it 
"forgot" the correct answers to the problems involving one.

This is not the behavior exhibited by human subjects. For 
instance, in a well-known experiment by Barnes and Underwood, 
described by McCloskey and Cohen, subjects were trained on an 
associative pair task of form A-B until they could recall the entire 
list of A-B pairs, and then were taught A-C associations. Subjects 
were given context information as to whether they were being asked 
to provide a response of form B or C. Even after subjects achieved 
good performance on the A-C list, they still retained better than 30% 
accuracy on the A-B list. This is in marked contrast to McCloskey 
and Cohen's model's performance; it forgot all the A-B associations 
quickly.

McCloskey and Cohen adjusted the representation of the input 
and outputs (local vs. distributed; more units vs. less) and the 
number of hidden units to attempt to deal with this forgetting, and 
changed the learning rate. None of these efforts met with any 
success. They explain this behavior by reference to regions in the 
space defined by the set of weights. The solution to the "add-1" 
problem is represented by a region in this weight space. The 
solution to the "add-2" problem is represented by a different region. 
The solution to the combined problem is represented by the 
intersection of these regions. When trained on stimuli from the 
combined problem, the system's vector of weights moves quite 
directly to the intersection region, using gradient descent. If trained 
on either sub-problem, it moves to that sub-problem's region, but 
not normally to the intersection region. If then trained on the second 
sub-problem, it then moves directly toward the second sub-problem’s 
region, but is not constrained to remain in the region of the first sub
problem, so it does not proceed to the intersection region. Only 
training on examples from both problems will move the weight 
vector toward the intersection region.

They and others (Hinton & Sejnowski 1986b, Hinton & Plaut 
1987b) suggest that rehearsing previously learned information 
during learning might mitigate forgetting. This may be what people 
do. Another suggestion is to modify the learning algorithm so that it 
learns without this forgetting; in terms of the example given above, 
our modified learning algorithm would remain in the region of the 
first sub-problem while moving toward the second sub-problem's 
region, thus ending up in the intersection region. The algorithm 
would therefore be somehow "keeping in mind" the association from



Neural Networks in Artificial Intelligence 117

the first set of stimuli. Unfortunately, these associations are not 
learned explicitly, but in terms of the functional relationship between 
their parts, so it is difficult for a connectionist machine to rehearse 
associations.

2.29. Remembering Old Knowledge
McCloskey and Cohen’s work, and that of others, demonstates 

the problem that it is hard for a network to learn something new 
without erasing what it has previously learned. Hinton and Plaut 
(1987b) deal with this problem by proposing that, for each 
connection in a network, two connections be substituted, with a 
weight on each of them. One of these would have a relatively rapid 
learning rate—the "fast weight"—while the other would have a 
relatively slow one. The slow weights would store the long-term 
knowledge of the network, while the fast weights would function as a 
short-term memory.

They propose a novel use of the fast weights in which the fast 
weights are used not simply to hold new associations, but to "deblur" 
the system. If the slow weights have come to reflect a set of 
associations—the "old" set—and are then trained on a new set, they 
will have a tendency—as McCloskey and Cohen have shown—to 
forget the old set. Hinton and Plant have devised a scheme in which 
the fast weights compensate for the changes in the slow weights so 
that the old associations are still recalled. This is analogous to 
deblurring in image processing: an algorithm is used to deblur an 
out-of-focus picture, based on information on how far out of focus it 
is. For Hinton and Plaut, he fast weights store this information.

They used a feed-forward network and back-propagation to 
carry out their experiments. This network contained both fast and 
slow weights with different learning rates. The overall weight of a 
connection is simply the sum of the fast and slow weights. The fast 
weights have a built-in tendency to decay to zero, so when the 
network reaches near zero error they will decay to zero. In the 
retraining, the fast weights retained information about the earlier 
slow weights—i.e., how far they had been perturbed from their 
earlier values.

Their task was to associate one 100-member set of 10-bit 
vectors with counterparts in another set; the 200 vectors, and the 
matches between them, were chosen at random, but were then fixed 
for purposes of learning the associations. The network's slow



118 Neural Network Methods for Learning and Relaxation

weights were trained by multiple sweeps through the data. They 
then trained the network on five new associations, until this new 
knowledge was stored in the slow weights. They then retrained the 
network on a portion of the original 100 associations. At the 
beginning of this retraining, the rest of the old associations were 
remembered almost as well as the portion used for retraining, even 
if this portion was as low as 10%. Eventually, of course, the portion 
used in retraining came to be recalled better. Hinton and Plant 
account for this by noting that the information about the initial 100 
associations is distributed across the entire pattern of the slow 
weights, so that, as the network relearns, it is pushed back in weight 
space toward the weight pattern representing the complete set of old 
associations, which it has visited before. This is what Hinton and 
Plaut call the transfer effect.

In order to understand the transfer effect, they choose a simple 
problem of a three unit network with two input units and a single 
output unit (see Figure 2.23). This network's weights are then 
trained to learn two simple linear associations: w lx l  + w2x2 = y 
and w jx'l  + w2x '2 = y'- This is represented by the point (w], w2) 
in the two-dimensional weight space which is at the intersection of 
the two lines in weight space corresponding to the two associations. 
For either association, any point on the line corresponding to it in 
weight space will do to represent the association; both associations 
can be represented only by the intersection.

INPUT

OUTPU

W1X 1 + W2X2 = y constraint 1

w x’ + w X' = y' constraint 2 
1 1  2 2

Figure 2.23. A network representing two linear constaints used by Hinton and 
Plaut (1987b). Reprinted by permission.
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They consider what will happen if the solution is perturbed 
some random distance from the solution point. This is analogous to 
what occurs during the learning of the new associations. If, after 
this perturbation, the network is retrained on only one of the two 
associations, it will tend to make a "bee-line" for the line that 
corresponds to that association. In Figure 2.24, the random 
displacement is somewhere in the circle around the intersection 
point. The two association lines divide this circle into four regions.

constraint 1

constraint 2

W2

Figure 2.24. Regions in the weight search space surrounding two linear 
constraints. From Hinton and Plaut (1987b). Reprinted by permission.

Hinton and Plaut point out that if the displaced point lies in one 
of the two larger regions of the circle, a movement in weight space 
from the displaced point toward the line associated with one of the 
associations will also bring the weights closer to the line representing 
the other association. If the displaced point is in one of the smaller 
two regions, such a movement will be toward one of the two 
association lines and away from the other. But the displaced point is 
more likely to be in one of the larger two areas. They extend this 
point mathematically to show that in circumstances like those in their 
simulation, the transfer effect occurs.

They note that as the point moves from one of the larger 
regions towards the intersection point, the circle becomes an ellipse, 
and the fraction of area corresponding to what was the larger area in 
the circle is smaller in this ellipse. Therefore the transfer effect gets 
smaller as re-leaming proceeds.
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2.30. Sequential Processing
Jordan (1986a) has applied connectionist models to sequential 

tasks in cognition. While much of cognition seems intrinsically 
parallel, such as the recognition of objects in a visual scene, many 
tasks, such as speech production and understanding, are intrinsically 
sequential. Nevertheless, even such a sequential task as speech 
production, Jordan points out, exhibits a certain degree of 
parallelism. This is evinced in phenomena such as co-articulation. 
In co-articulation, the shape of the mouth and tongue during the 
utterance of a particular phoneme will be influenced by a phoneme 
that is to follow; Jordan gives the example of the word "freon", the 
opening of the mouth that is required to pronounce the "n" can start 
as early as the "e".

The formalism used by Jordan for expressing sequential 
performance employs a sequence xj, X2 , ■■■, xn of actions taken by 
the system. The x's, each of which is a vector, are stored, one after 
the other, over time. That is, X2 replaces xj in the output units, then 
x j  replaces X2, and so on. There is also a static vector p, called the 
plan. There is another vector sequence si,  S2 sn, which is the 
sequence of states of the system. At any given time step in the 
operation of the system, the state vector is the "memory" of the 
system, that is, the system's recollection of all the previous outputs it 
had.

Jordan's network is 
shown in Figure 2.25. In 
order to compute a non
linear function of the plan 
and state units to arrive at the 
next output (action), a layer 
of hidden units are present.
The layer of input and plan 
units is completely connected 
to the layer of hidden units, 
which in its turn is 
completely connected to the 
layer of output units. As far 
as we have described it, the network is completely feed-forward.

It also has some recurrent connections. Each of the state units 
is connected to itself, and each of the output units is connected to the 
state units. Thus both the previous state and the current output

Figure.2.25. Recurrent network of Jordan 
(1986a). Reprinted by permission.
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determine the next state, as defined by the state units. A learning 
algorithm such as error back-propagation is used to train the weights 
in the system so as to produce the desired sequence of actions.

Generally, it is desirable that the state vector changes 
continuously in time, that is, a pair of successive state vectors should 
be similar to one another. For one thing, this makes the associations 
between them easier to learn, since the state vector can simply flow 
along a trajectory in state space. But the main reason for this 
continuity requirement is to provide the kind of parallelism that is 
illustrated by co-articulation. This parallelism means that there must 
be aspects of the state vector that are "getting ready for" the next 
action, and these are similar to what they will be on the next time 
step.

As an example, Jordan considers the case where the learning 
system must learn the sequence (1.0 * *) (* 1.0 *) (* * 1.0), in which 
the state vector has 3 components and * indicates "don't care". In 
this case, the system will likely learn a sequence such as (1.0 0.8 0.6) 
(0.8 1.0 0.8) (0.6 0.8 1.0), since each state generalizes from nearby 
states. This is similar to co-articulation. As more and more 
components of the state vector are specified on each time step, this 
parallelism becomes less possible, and learning takes longer.

Jordan observed that in the case of a system that learned a 
sequence of states under this continuity requirement have a particular 
property: that their learned states serve as attractors. That is, if one 
of the states in a learned sequence is perturbed somewhat, to a 
nearby point in state space, and this state is input to the system, the 
system will correct the perturbation and get back to the correct 
sequence, although this may take some time, and the correct sequence 
may only be approached asymptotically. In the case where a system 
has learned a number of independent cyclical sequences, each of 
these sequences serves as an attractor for those states similar to states 
in the sequence in question. This, Jordan notes, is a generalization of 
Hopfield’s network, in which partial representations of states flow 
into complete representations, called limit points, thus serving as a 
content-addressable or auto-associative memory (see section 2.8) In 
Jordan's system, the attractors are not points, but trajectories 
through state space. Jordan uses the term attractor dynamics to 
characterize the study of his class of systems.

Jordan applied this network formalism to the simulation of the 
co-articulation data. He notes that his system can be viewed as a 
discrete version of a continuous process; this has promise in the
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simulation of continuous sequential processes such as speech 
articulation.

In related work, Rumelhart, Hinton, and Williams (1986c) 
have extended the back-propagation algorithm to sequential data. 
They use networks that have one layer for each time slice.

2.31.Image Compression Using a
Back-propagation Auto-associator
Cottrell, Munro, and Zipzer (1987) devised a method of image 

compression that is based on back-propagation. Their method is 
based on the fact that most real images contain large amounts of 
redundant information. Their compression technique can be applied 
to any redundant data file, not just images.

In their experiments, they used 8x8 pixel images, with 8-bit 
pixel values ranging from 0 to 255. The system contained three 
layers, with the input and output layers both being 8x8 images, and a 
layer of 16 hidden units in between. The goal was to completely 
represent the 64 bytes of information in the image in the 16 hidden 
units. The network is feed-forward, with each layer being 
completely connected to neighboring ones. For the purpose of back- 
propagation, the desired output was the same as the input; thus the 
network was an auto-associator.

The network was trained for 100,000 images, which were 
patches drawn from a single, much larger image, with a learning 
rate of 0.25, and then on an additional 50,000 patches, with a 
learning rate of 0.01. This resulted in a "compression machine", 
which yielded reasonable results on visual inspection (comparing an 
image reconstruction from the compressed version with the 
original).

In order to compare their results to more conventional 
methods for image compression, they had to limit the hidden units to 
having a fixed number of output values, so that they could measure 
the relative number of bits in the compressed vs. the uncompressed 
versions. There is a trade-off between image quality and 
compression. There are two ways that the amount of compression 
can be varied; by changing the number of hidden units and by 
changing the number of possible output levels that the hidden units 
might have (which the authors refer to as the quantization).

They compared their algorithm with a standard compression 
algorithm, the principal components transform (PCT). This
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transform is based on multiplying the vector of elements 
representing the uncompressed image by a matrix so as to transform 
the coordinates in which the vector is represented to ones that display 
the maximum variance along their axes, thus removing correlations 
between pairs of coordinates. To decompress, the inverse matrix is 
used.

In both the PCT method and their method, they note, the 
resultant image can be viewed as a linear combination of basis 
images (since the hidden units tend to have inputs that stay in the 
linear ranges of their sigmoid activation functions). In the two cases, 
though, the set of basis images are different.

Cottrell and his co-workers argue that their system is an 
example of a new programming style, called extensional 
programming. This term simply indicates that the network was not 
explicitly programmed to solve the problem (of compression), but 
rattier it learned by example. They note that, because a linear 
solution was found, it was not necessary to use a non-linear system, 
although they found that the non-linear system generalizes better to 
novel images. They feel that their technique may be better than the 
PCT method in certain circumstances, such as in the case in which 
there is a noisy channel for the transmission of the compressed 
image, because the variance in the image is better distributed among 
the various components of the compressed image than it is in the 
PCT compressed image, so loss of one or two important components 
of the PCT can cause substantial degradation in the image.
2.32. Representing Recursive Structures

in Connectionist Networks
Many of connectionism's critics (e.g., Fodor and Pylyshyn, see 

section 1.9) have argued that recursive symbol structures, such as 
trees, lists, and stacks, are essential to any theory of cognition, 
including a connectionist one. For instance, many linguistic rules are 
recursive, such as

NP <—NP PP

which says that a noun phrase may be generated by taking another 
noun phrase and appending a prepositional phrase to it. This leads to 
an infinite variety of linguistic constructions such as "the woman", 
"the woman with the binoculars", "the woman with the binoculars at 
the zoo", etc.
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Touretzky (1986) shows how such recursive structures may be 
implemented in a connectionist network. He takes the title of his 
system from the Boltzmann machine (Ackley et al. 1985; see section 
2.10), which is the particular neural network type that he used to 
implement his system, and the LISP operation CONS, which is used 
to recursively CONStruct a list out of two lists or atoms, and is the 
basic list-constructing operation in LISP. Each CONS operation 
creates a CONS cell, which is a record containing two pointers, one 
to the CAR, and one to the CDR (the names CAR and CDR come 
from old IBM mnemonics, which no longer have any significance). 
These CONS cells, as any introductory computer science student 
knows, can be used to construct many dynamic data structures, such 
as binary trees, stacks, and linked lists. For an introduction to LISP, 
see (Wilensky 1986).

Touretzky takes off from his and Hinton's design for their 
connectionist production system interpreter, DUCS (see section 3.2), 
in his design of BoltzCONS. As in the production system network, 
there are 25 distinct symbols, and each unit in the system is sensitive 
to six symbols in each position of a triple of symbols; thus each unit 
is receptive to 6^ triples out of the 25^ possible.

The BoltzCO N S 
System is divided into 5 
modules, as shown in Figure
2.26. The CONS memory is 
used to store all of the CONS 
cells. Each CONS is 
represented by a triple (tag 
car cdr), where each of tag, 
car, cdr is one of the twenty- 
five symbols supported by the 
system. Each CONS cell has 
a unique symbol associated 
with it; thus the system can 
represent only 25 CONS cells 
at once, or less if some of the symbols are considered to be atoms, 
which are stand-alone symbols that do not denote any CONS cell.

Many triples are stored in CONS memory; the CONS pullout 
network is used to select one triple from the memory. Three 
winner-take-all networks are used to store the symbol from each of 
the three symbol positions; these are called (naturally enough) the 
tag, car, and cdr networks. Each of these is identical to a bind space

Figure 2.26. The BoltzCONS system 
(Touretzky 1986). Reprinted by permission.
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in the production system network. The representation of symbols in 
these bind spaces is itself distributed; each symbol is represented by a 
unique pattern of activation across the bind space. Each unit that 
participates in the pattern for a particular symbol, say x, is positively 
connected to a random subset of the units in car pullout space that 
participate in the representation of x in the particular position in the 
triple corresponding to which bind space we are talking about: in the 
case of the tag space, the first position; in the case of the car space, 
the second position; and in the case of the cdr space, the third 
position.

Touretzky gives the example of a stack represented by the 
triples (p a g) (g B r) (r C s) (s D nil). Note that the first symbol of 
each triple is the same as the last symbol of the previous one; this 
provides the links between stack elements. To pop the top element 
off the stack, the symbols p, A, and g are loaded into the tag, car and 
cdr spaces respectively, and the triple (p A g) is represented in the 
CONS pullout space. The triple (p A g) is removed from the CONS 
memory by activating gated inhibitory connections between 
corresponding units in the CONS pullout space and the CONS 
memory. The CONS pullout space and the CONS memory have the 
same structure, except that, because of inhibitory connections, the 
CONS pullout space can represent only one triple at a time. In order 
to move the triple (g B r) to the top of the stack, that is, into the 
CONS pullout space, the activation pattern corresponding to the 
symbol g is clamped into the tag space, and then simulated annealing 
(see section 2.10) is run on the CONS pullout space and the three 
bind spaces to find a minimum energy state. There are excitatory 
connections from units in the CONS memory to corresponding units 
in the CONS pullout space. This annealing causes the triple (g B r) 
to move into the CONS pullout space, since it is the only triple that 
has g as its first symbol.

In order to push a new symbol on the stack, say E, Touretzky 
chooses a new "pointer" symbol, say t, copies the tag space to the cdr 
space, and puts t into the tag space and E into the car space. The 
combined influence of these three spaces—if, for example, (g B r) 
was formerly on top of the stack—causes the triple (t E g) to move 
into the CONS pullout space, and then via gated excitatory 
connections, to move into the CONS memory.

Having shown how to implement stack operations, Touretzky 
moves on to trees. The main difference between BoltzCONS and 
ordinary LISP is that BoltzCONS has the ability to follow pointers
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backwards. For instance, Touretzky gives an example of a tree in 
which the root is (v w y) and its two children are (w A x) and (y D 
E). If you are at either of the children of the root as you traverse 
this tree, it is possible to get back to the root. For instance, if you 
are at (w A x), you know that w must be the car or the cdr of the 
parent; it may take two attempts to find the parent node, in which w 
is loaded into the cdr and cdr spaces, one at a time, to find the 
appropriate triple, but BoltzCONS can find it. Touretzky shows that 
is possible to implement a tree traversal in terms of BoltzCONS 
operations alone, without using an auxiliary stack, which a 
conventional implementation of a tree traversal would require, since 
a tree traversal is a naturally recursive operation, and recursive 
operations require a stack.

In the initial implementation of BoltzCONS, a program in 
LISP controlled BoltzCONS's operations, such as clamping a space 
(holding its activations constant, at fully activated), starting 
annealing, etc. in the spirit of making the system completely 
connectionist. Touretzky implemented the control module as a 
connectionist network as well, using his and Hinton's (1985) 
production system interpreter, DUCS, suitably modified. The 
sequential nature of the control module is implemented using a set of 
production rules that execute in sequence.

Touretzky argues that systems like BoltzCONS and the 
connectionist production system interpreter, DUCS, are interesting 
not because they can compute solutions to problems that Turing 
machines can't, but because they can compute them in a way that is 
biologically plausible in that they use distributed memory and 
massive parallelism to solve constraint satisfaction problems.

Touretzky also notes that the modules employed in BoltzCONS 
and in DUCS, that is, bind spaces, pullout networks, and distributed 
representations of symbols, are generally applicable to symbol 
processing in the connectionist paradigm. For Touretzky's more 
recent connectionist work, much of it in the same vein, see 
(Touretzky 1989a,b,c).



3
Production Systems and 

Expert Systems

3.1. Introduction
Work in the development of connectionist rule-based systems, 

which can be used to simulate expert performance, can be divided 
into two areas. The first type of work, exemplified by the work of 
Touretzky and Hinton (1985) , simulates the firing of rules, as in a 
production system. The second type of system, such as that 
developed by Gallant (1988), or that of Saito and Nakano (1988), 
uses a neural network learning algorithm, such as error back- 
propagation, to learn relationships between inputs and outputs; these 
relationships are normally considered expert knowledge. For 
instance, the inputs might be configurations of symptoms and the 
outputs might be diseases. As has been done with many symbolic 
expert systems, both Gallant, and Saito and Nakano, use a medical 
domain to demonstrate the expert capacities of a neural network. 
The network, once trained to exhibit expert knowledge, can be 
examined and rules can be extracted from it, based on correlations 
between particular inputs and outputs. ■

The work of Gallant, and that of Saito and Nakano, illustrates 
the applicability of connectionist systems to expert systems. Since no 
rules need be explicitly programmed into a connectionist expert 
system, the development time of such a system is substantially 
reduced from that required for a traditional symbolic rule-based 
system, in which the process of discovering rules is slow and 
painstaking.

The work of Touretzky and Hinton is interesting not because 
of its practicality for use as a tool to implement an expert system, but
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because it illustrates how a rule-based system can be implemented in 
a distributed connectionist system. In this it is similar to Touretzky’s 
BoltzCONS (see section 3.2), which shows how a LISP-like system 
may be implemented in a connectionist network.

In the following sections we discuss the systems of Touretzky 
and Hinton, of Gallant, and of Saito and Nakano in detail.

3.2 . A Connectionist Production System
Touretzky and Hinton (1985) consider the problems of pattern 

matching and variable binding within the connectionist paradigm. 
These operations are critical to implementing a standard AI 
production system. They devised their system partly to respond to 
criticisms that connectionist systems were unable to deal with 
standard symbolic stimuli as encountered in AI. These criticisms 
have been effectively been taken care of by their system and others; 
the debate has shifted to whether or not connectionist systems are an 
efficient mechanism for implementing such standard AI symbol 
processing systems such as production systems.

They use a distributed connectionist system, which they call 
DUCS, consisting of binary threshold units. They use rules of the 
form

(F A A) (F B B) +(G A B) -(F A A) -(F B B)

This rule can be interpreted as follows: replace the triples (F 
A A) and (F B B), if they are present in the working memory, with 
the triple (G AB). In the second version of their system, they added 
variables to the first position of a triple in a rule if the triple 
appeared on the left side of the rule.

Their system is comprised of five groups of cells. The main 
one of these is the working memory. There are two "clause spaces" 
called C l  and C2, and each holds a single triple. There is a space 
representing the production rules, and another space representing 
the variable bindings.

The system behaves like a standard production system, which 
repeats a recognize-act cycle over and over; recognizing the left 
side of a rule, and taking the action specified on the right side of that 
rule. In the recognize phase, cells in working memory influence 
cells in the Cl and C2 clause spaces, and the rule and binding spaces.
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Relaxation takes place until a state that corresponds to a match is 
achieved.

The working memory represents triples of symbols. They 
have chosen to represent 25 different symbols. They preferred a 
distributed representation using coarse coding to a local one. The 
latter would have required 25^=15,625 distinct neurons. Their 
representation requires 2000 cells, each of which responds to 
6^=216 triples, because each cell responds to six randomly chosen 
symbols in each position of a triple. Because the cells recognize 
2,000x216=432,000 triples, each triple is recognized by 
approximately 432,000/15,625*28 cells. Thus each triple is 
represented by a pattern of activity over about 28 cells. A triple is 
stored by activating all of the cells that are receptive to it. 
Conversely, a triple is present if all but a few of the cells that are 
receptive to it are activated. The system is relatively insensitive to 
noise, in that a few cells can be missing from the representation of a 
triple and the triple would still be considered to be present in 
working memory. This is necessary, since it is essential that one be 
allowed to remove triples from working memory as well as add 
them. The problem with removing triples is that a given node can 
serve in the representation of more than one triple. TTiis is why it is 
not required that all the nodes associated with a given triple be 
activated in order for that triple to be considered present, because 
some of its nodes could have been deactivated as the result of the 
removal of other triples from working memory.

Note that, since coarse coding is used, when many similar 
triples are stored, the system is unable to tell which of them is in 
fact present.

The two clause spaces Cl and C2 each has exactly the same 
number of cells as the working memory, 2,000. Each cell in the 
spaces is connected to a corresponding cell in working memory. 
Thus C l  and C2 are structurally identical to working memory, 
except that the cells in clause space inhibit one another in such a way 
so as to limit the total number of cells in the space that can be 
activated at the same time to 28. This is because each space is 
designed to hold only one triple at a time. Since the rules have two 
antecedents each, the idea is that the two triples on the left side of 
the rule come from the two clause spaces, one from each space.

Rules are represented in a distributed manner; each rule is 
represented by a collection of 40 rule cells. Each rule cell is
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positively connected to the clause spaces. If triples 77 and T2 are 
the two triples on the left side of the rule X , then each of the 40 rule 
cells of rule X are connected to a random subset of the cells 
representing 77 in the C l clause space, and to an equal number of 
randomly selected cells that represent T2 in C2. The 40 cells 
comprising the rules form a clique. Cells inhibit cells outside their 
clique. Thus the rule space is a winner-take-all network; after the 
network settles all the cells representing a single rule will be 
activated, and no others. They chose a distributed representation for 
rules partly so that if two rules match, the one that matches more 
strongly would be activated.

The rule cells perform the rule by being connected to cells in 
working memory that represent the triples that the rule takes action 
on. If the rule inserts a triple into working memory, each node 
representing the rule is positively connected to a random subset of 
the cells representing the triple in working memory. If it deletes 
them, then the connections are negative. The system is set up so that 
the rule firing connections are gated; that is, the rules are not 
allowed to take any action until a single rule has settled into place. 
Touretzky and Hinton can show that each phase, rule recognition 
and firing, corresponds to Hopfield energy minimization (see section 
2.8).

In order to handle variable binding, they use another set of 
cells called bind cells. There are 25 possible values that a variable 
can take on, since there are 25 distinct symbols that the system 
recognizes. As in the rule space, each symbol is represented by a 
clique of 40 cells. Each of these cells is connected to a random 
subset of all the nodes in Cl and C2 that have that particular symbol 
in their first position. If the clause spaces settle into the 
representation of two triples, each of which begins with the same 
symbol, then the bind space will settle into a state in which the nodes 
representing that symbol are activated. In order for the system to 
work properly when variables are allowed, the rule cells must be 
given larger receptive fields, because a rule antecedent that contains 
a variable has a larger number of possible triples that it can match.

One problem with their system is that it doesn't allow for 
conflict resolution; that is, it cannot deal with the situation in which 
more than one rule is ready to fire at a given time. All standard 
production system interpreters provide some form of conflict 
resolution. If such a conflict occurs, DUCS will not function 
properly. This is a serious limitation. However, the system, like
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many other connectionist systems, is subject to crosstalk, whereby 
many weakly activated rules may cause a triple to incorrectly enter 
the clause space, and cause the wrong rule to be activated.

In a simulation, their system is much, much slower than an 
standard symbolic production system interpreter such as OPS5 
(Forgy 1981). If it were built in hardware, it would be much faster, 
probably comparable in speed to OPS5 running on a conventional 
computer. The point of their work, however, was to show that 
connectionist systems can handle very general form of symbol 
processing, not that they can do it more efficiently than conventional 
systems. Their system has properties that are more human-like than 
a conventional system, such as graceful degradation of performance 
if the working memory gets overloaded.

Another disadvantage of this system, as opposed to standard 
systems, is that the rules have to be wired into the system, as 
opposed to being fed in as data. An interesting extension of this 
work would be a system that learns production rules, which is 
effectively what is done in the work described in the next two 
sections, although rules are not represented explicitly.

3.3. Saito and Nakano's Connectionist Expert System
Saito and Nakano (1988) applied a connectionist network to a 

problem in medical diagnosis that has been traditionally within the 
area of application of rule-based systems. They use a three-layer 
feed-forward network to represent the diagnostic information. It 
has 216 input units, which are divided into small sets, each set 
corresponding to a question given to the patient; for each possible 
response to a question one of the input units in a set corresponding 
to that question is active. The middle layer consists of 72 hidden 
units; the output layer uses 23 units corresponding to the 23 diseases 
that the system knows about. Each of the layers is completely 
connected to each unit in the layer above it.

For the purposes of training the network, 394 patient records 
were utilized, in which the output disease was given, as well as all 
the diagnostic data. Back-propagation was used to train the system. 
After the training period, the network responded "perfectly" to an 
additional 300 cases. They defined a perfect response as one of the 
output units responding with an activation greater than or equal to 
0.75, and all the others responding with activation less than 0.25. 
Note that a perfect response, as they define it, is not necessarily a
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correct one; it is just one in which a single unit is responding. It 
would be surprising if the network achieved a percentage of correct 
diagnostic responses that is significantly better than that given by 
expert physicians.

Saito and Nakano define two measures of the system, 
precision and recall. Precision is the ratio of the number of diseases 
that the system diagnoses correctly to the total number of diseases 
that it diagnoses, and recall is the ratio of correctly diagnosed 
diseases to the actual number of diseases present in the patient. 
Their system gave a recall result of 0.54 and a precision result of
0.21; this is based on the (low) threshold for a disease being present 
of 0.25. This low value biases the system in favor of recall, with a 
loss of precision (many inaccurate diseases are diagnosed). 
Accuracy was defined as the fraction of diagnoses in which one of 
the diseases diagnosed was actually found to be present in the 
patient. Their system had an accuracy of 67%. A symbolic expert 
system programmed to handle the same task achieved accuracy of 
about 70%. Of course, these numbers are not really useful for 
comparing symbolic vs. connectionist expert systems, since they are 
implementation-dependent.

The expert neural network can be viewed as a source of 
information for knowledge acquisition. Knowledge acquisition has 
been long recognized as a "bottleneck" in the construction of expert 
systems; although expert behavior may be rule-governed, it is 
notoriously difficult and time-consuming to determine what the 
rules are, and what the relation factor (RF) relating antecedent and 
consequent of each rule may be. (The RF is a number that quantifies 
the strength of the association.) If it is possible to extract RFs both 
from a connectionist network and from interviewing experts, then 
the best of both worlds could be built into a system, resulting in a 
system with maximal performance.

Saito and Nakano define two methods for determining the 
RFs. In the first method, the output of a node representing a disease 
D is given by B(D), when no symptoms are input (zero input 
vector), and A(S,D)  if only the input node corresponding to 
symptom S alone is activated, and no others. In this case, RF](S,D) 
= k](A(S,D) - B(D))y where k1 is a constant. This formula 
measures the effect of a single symptom on the presence of a given 
disease, ignoring the effects of other symptoms. The second 
estimate is given for an actual set of patients. Here C(S,D,P) gives 
the change in the output value of D when patient P 's symptom S is
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switched from 1 to 0 and defines the sum of the C’s over the patients 
as

sum(SJD)=£  C(S,D,P) 
p

Saito and Nakano let N(S) be the number of patients for which 
this has been done. They define RF2(S, D) = k2(sum(S, D)/N(S)), 
where k2 is a constant. Thus this measures the average effect that S 
has on D in an actual patient set.

RFs relate only single symptoms with single diseases, and 
cannot represent non-linear or conjunctive relationships between 
symptoms of diseases. To cope with this problem, Saito and Nakano 
invented a method for extraction of rules from their neural 
network. They did this by considering sets of symptoms, setting all 
the symptoms in such a set "on" in the neural network, and then 
seeing if a given disease D is activated. If it is, then a rule of the 
form: if D then (set of symptoms) is generated. If, at this point, 
activation of a second set of symptoms causes D to be de-activated, 
then the rule is modified to : if D then (set of affirmative 
symptoms)(set of negative symptoms).

Since for n symptoms there are 2n sets of symptoms, one must 
find a way of considering only a small subset of this power set, to 
avoid combinatorial explosion. They restrict their sets of 
affirmative symptoms to symptoms that are found in conjunction in 
actual patients, and sets of negative symptoms to symptoms that are 
all absent together in actual patients. Secondly, Saito and Nakano 
restrict the size of the symptom sets that can occur; in their example 
of role extinction they limited the size of the affirmative symptom 
set to three and that of the negative symptom set to a single 
symptom. Using the 216 input nodes representing symptoms of the 
network described above, they extracted 443 rules about the single 
disease muscle contraction headache, of which 303 were affirmative 
rules and 140 were negative rules, such as "if (muscle-contraction 
headache) then (the headache continues all day long)" and "if (not 
muscle contraction headache) then (previous headache has happened 
more than 3 years before) and (when the headache is serious it is too 
severe to hear)". Physicians to whom they showed the rules thought 
that they made sense and were reasonable. An enormous number of 
rules can be extracted by this method.
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These rules, once they are extracted, can be used to confirm 
patients' symptoms, to extract symptoms that patients are only 
partially conscious of, and to reject symptoms that are the result of 
errors made by patients in the course of answering a questionnaire. 
Saito and Nakano have automated this confirmation procedure as a 
feedback loop between diagnosis and confirmation, which iteratively 
improves the quality of a diagnosis.

3 .4 . Gallant's Connectionist Expert System
Like Saito and Nakano, Gallant (1988) developed a 

connectionist system which deals with a specialized domain in 
medical diagnosis, acute theoretical diseases of the sarcophagus. 
There are nodes in three layers corresponding to each symptom 
(layer 1), disease (layer 2), and treatment (layer 3) that is relevant 
to this domain; the nodes are 3-valued, with 1 denoting the 
activation of a disease, symptom, or treatment, -1, the de-activation 
and 0, the absence of knowledge. Connections between nodes reflect 
dependencies between pairs of three types of nodes. There are no 
cycles in the network. Additional cells were added between the 
input cells (symptoms) and layers 2 and 3 to increase the 
computational power of the network. The cells are threshold cells 
that take value 1 if their total weighted input is positive, -1 if it is 
negative, and 0 if it is zero. There are cells intermediate between 
each adjacent pair of layers. Gallant uses a learning algorithm that 
he calls the pocket algorithm

The pocket algorithm is a variation on the perceptron learning 
procedure. The basic idea behind the pocket algorithm is that for 
each vector of weights impinging on an internal or output node, 
there is another vector in your "pocket" as it were. Over the course 
of training, if the vector of weights results in a longer string of 
correct classifications than the vector of weights in your pocket, then 
you replace the pocket weights with this vector. Each internal or 
output node u is trained independently, and it is presumed that a set 
of pairs Ek, C& is used for training, where Ek  is a vector of the 
activations of the nodes that are inputting to u and is the 
activation of u, all on the £th iteration. After each iteration, the 
weight vector P  is modified by the formula P'= P+Ekck, to move 
it closer to the current pattern of activation. In the case of two 
output values and a weight vector P, a correct classification is when 
P*Ek > 0 and C^= 1, or when P*Ek < 0 and C^=-1.
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The pocket algorithm is not guaranteed to converge to good 
performance, but it does monotonically improve performance by 
always successively selecting better sets of weights.

The connectionist inference system that Gallant has developed 
is called MACIE (for Matrix Controlled Inference Engine), because 
Gallant uses a matrix to represent his weights. It reasons on the basis 
of incomplete information. Any node ak in the system representing 
a disease or treatment is dependent on, and therefore receives input 
from, a set of nodes lower down. Some of these nodes—let us refer 
to them as u(—have known values, and some of them—vj—have 
unknown values. It is often possible to reach a conclusion about the 
value of a node in the system in a given situation. If the maximum 
amount of output that the unknown nodes could be giving,

MAXUNKNOWN=£  wjk 
j

is less in magnitude than the amount of input that the known nodes 
are given, which is

K N O W N = £  wikUi 
i

then the unknown nodes cannot change the sign of KNOWN, and 
therefore the value can be set to 1 if KNOWN is positive, and -1 
otherwise.

He also computes, for each node, the confidence that it will be 
eventually activated. For known cells, the confidence is defined as 
simply the cell's activation. For unknown input cells, the confidence 
is zero (nothing is giving us any information about their status). 
For other unknown cells, the confidence is defined as the weighted 
sum of the confidences of all the cells impinging upon a given 
unknown cell (computed one level at a time, from the bottom up), 
normalized by the total weight attached to unknown cells:

X wijConf(Uj)

' I  W„
j, Uj unknown

This is just one of many possible heuristics.
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As in all expert systems, it is useful to know what additional 
data to gather in order to clarify the value of an unknown variable. 
For instance, if there is a collection of output variables, none of 
which has been verified or falsified (possibly representing diseases 
or treatments), the system selects the variable u among these with 
the highest associated confidence. It then repeatedly searches 
backward in the system through the layers, starting with w, at each 
layer choosing the unknown variable with the largest weight 
connection to the variable in the layer above. Eventually, in this 
fashion, an input variable is reached, and data can be gathered on the 
value of this input variable. This information is then fed forward 
through the layers of the system, and it may resolve the value of the 
output variable in question. If not, the whole process is repeated. 
This technique may be used to prove or disprove hypotheses, or 
both. It is a connectionist implementation of the back-chaining 
technique normally used in expert systems. The system also allows 
the user to enter "unobtainable" to a request for information, and 
then that node's value is marked as permanently unknown.

Like Saito and Nakano's system, Gallant's system also explains 
its behavior by extracting rules from the network as follows. For a 
given node all the nodes with known values uj directly affecting 
it are considered in order of the absolute value of the weight wij on 
the connection between i and j. For instance, node u.5 (state 1) 
might receive input from nodes uj, u2 , u3, and 114, with states 1, -
1, 1, -1 and weights -3, 6, -5, 4 respectively. Nodes u2 and u3 
would be chosen to participate in the rule because their absolute 
weights are largest and the sum of their absolute weights (11) 
exceeds the sum of all the remaining weights (7). The following 
rule is therefore formed: if ((not u2) and u3) then u5. This, of 
course, is just one of the many rules that might be formed, but it has 
the advantage of selecting a set of decisive variables. The rules so 
generated were judged to be reasonable by physicians.

The system, like that of Saito and Nakano, achieved 
performance of about 70% in making the correct diagnosis in an 
application that detected causes of infantile diarrhea. Experts 
achieve roughly the same performance. Gallant has applied his 
system to a variety of domains.

Gallant states that his system is not a model of human 
reasoning: rather it is designed for practical use. He views his work 
as providing a framework for knowledge engineers to use in 
building expert systems: he believes that the engineers need good
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knowledge of connectionist principles in order to use such tools 
effectively, and that connectionist approaches to knowledge 
engineering can not "automate away" the knowledge acquisition 
process.

One interesting extension of such attempts at connectionist 
expert systems would be to integrate them with connectionist 
attempts at knowledge representation that embody such properties as 
inheritance (see the next chapter). This would be in keeping with the 
general trend in research on expert systems toward modelling the 
domain-specific knowledge of an expert in a way that reflects the 
structure of the system that the expert is dealing with. For instance, 
an expert system for kidney disease would incorporate a model of 
the kidney's structure and function. For a discussion of these issues, 
see Patil (1987).



4
Knowledge Representation

4.1. Introduction
Work in knowledge-representation in connectionist systems is 

closely related to that in natural language understanding, the topic of 
chapter 7. Connectionist attempts at knowledge representation must 
succeed at embodying some sort of structured data object or set of 
objects in a system. For early discussions of how this might be done, 
see Minsky (1977) and Hinton (1981a).

There are many approaches to this. Some of them are 
distributed, like Touretzky's DUCS (1985), in which each concept is 
represented by a pattern of microfeatures. Others are localist, such 
as Shastri's (1988), in which single nodes are associated with 
concepts, and the casual relationship between concepts is represented 
by the strength of connections between them.

One way of thinking about the difference between distributed 
and local methods of knowledge representation is that distributed 
representations handle the set containment relation by having the 
subsets (microfeatures) form parts of a superset's representation, 
whereas local representations handle the same subset-superset 
relation by connections between local nodes. The former approach 
is taken in the work of Touretzky on representing schemata in a 
neural network. The latter approach is taken in the work of Shastri 
on knowledge representation.

Inheritance of features of classes by class members is 
implemented in connectionist networks by Shastri and by Dolan and 
Dyer. Minsky (1977) and Hinton (1981a) have also done work in this 
area.
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4.2. Storing Schemata in Neural Networks
One of the first efforts to embody structured knowledge 

representations—often known as schemata—in neural networks was 
made by Rumelhart, Smolensky, McClelland, and Hinton (1986f). 
They represented in the network information about five different 
types of rooms—a kitchen, office, bedroom, bathroom, and living 
room. There were forty room descriptors, which were items one 
could find in one or more of these rooms. They interviewed subjects 
on each of the rooms and asked for each of the descriptors, asked 
whether that descriptor was likely to be found in that room. For 
each room, 13 subjects judged each descriptor. This allowed the 
estimation of probabilities that room descriptors co-occur. Note that 
certain descriptors were characteristic of all rooms—for example, 
ceiling, walls, and floor—while others were highly specific to 
particular room—for example, stove, toilet, and bed. Once the co
occurrence probabilities were estimated, they were used to set the 
weights in a completely connected neural network of 40 units 
representing the room descriptors in the following manner:

P(xt = 0 &xj = 1) P(xi = 1 & Xj = 0)
WV ~ ' n P(xi = l & x j  = l)P(xi = 0 &Xj =0)

where xi and xj are the binary activations of descriptor units i and j  
respectively and wij is the weight connecting them. This formula is 
derived from probability theory and estimates the co-occurrence 
probability. Each unit has a bias equal to

-ln(P(xi=0)/P(xi=l))

This measures the degree to which a unit is on; if it is often on, this 
number is negative; if often off, it is positive.

They performed a Hopfield energy-minimizing relaxation on 
the network (see section 2.8) by clamping the value of one of the 
forty descriptors. Out of the 2^0 possible states of this (binary) 
system, they found that the system always settled to one of five states 
corresponding to the room that is most associated with that 
descriptor. None of these five schemata is explicitly represented in 
memory; they are emerge as patterns in the correlations between 
pairs of microfeatures.
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There were also subschemata within these schemas: smaller 
bits of related microfeatures, such as floor lamp and easy chair, desk 
and desk chair, window and drapes. If one of these pairs is present 
in the network, but not the other, the Hopfield energy is higher than 
if both are present. Rumelhart and his co-workers describe gradient 
descent in terms of a function, the goodness-of-fit function, that is 
the Hopfield energy function inverted; it is high when the Hopfield 
energy is low and vice versa. They plotted this goodness-of-fit 
function for those states in the intersection of a plane formed by 
three maxima (rooms) in the state space and the forty-dimensional 
state space of the network. If the "goodness" function sagged deeply 
between the maxima, this meant that rooms in between these maxima 
were not very good rooms at all, whereas if the goodness function 
looked more like a plateau, this meant that intermediate rooms were 
plausible. Explorations of goodness "landscapes" in this fashion 
indicated, for instance, that intermediate rooms between bathroom 
and office were not very good rooms, but intermediate rooms 
between bedroom, living room, and office are much better, as one 
might expect.

This implementation of schemata differs from that of 
Touretzky (see section 4.3) and Dolan and Dyer (section 4.4) which 
more explicitly treat schemata like Minsky's frames, each of which is 
as a collection of slot/filler pairs. The schemas of rooms in 
Rumelhart and co-workers' work are more simply collections of 
microfeatures.

4 .3 . Storing Frames in Neural Networks
Touretzky (1987) in his paper "Representing Conceptual 

Structures in a Neural Network", tackles some of the issues involved 
in connectionist approaches to knowledge representation. A classic 
knowledge structure in AI, the frame, consists of a series of slot 
names and slot fillers. For instance, Touretzky gives as an example 
the frame representation of the sentence "Down by the henhouse, 
John threw a rock at the fox." which is:

Agent: John 
Verb: Throw 
Object.Rock 
Destination :Fox 
Location: Hen House
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In his scheme, both slots and slot fillers are represented as bit 
vectors. Each bit in the vector represents a microfeature. Touretzky 
does not go into the semantics of these microfeatures, except to say 
that they are primitive, but he notes that similar slot names and 
fillers should have similar patterns of microfeatures.

His scheme is called
DUCS, for D ynam ically  
Updateable C o n cep tu a l 
Structures. It allows one to 
store multiple slot-filler 
relationships in a structure 
called the concept buffer. 
The architecture of DUCS is 
shown in Figure 4.1.

Traditional approaches 
to knowledge representation 
in the connectionist paradigm 
involve local representations

— 2F—«-
Figure 4.1 The architecture of DUCS 
(Touretzky 1987). Reprinted by Permission.

for each slot and filler; the 
relationships are given by the weights of the connections between 
local nodes. In order to retrieve several slot-filler relationships, 
copies of the entire network have to be made.

DUCS gets around this by having concepts be patterns of 
activity in a structure called a "concept buffer". Multiple selectors 
can be attached to this buffer to pull different slot-filler 
relationships from it.

Concepts, in DUCS, can have an arbitrary number of slots. 
Performance degrades as slots are added and the available units 
become saturated.

In addition to concept buffers, which hold individual concepts, 
DUCS also contains a concept memory, which can hold several 
concepts at the same time. Individual concepts are retrieved from 
the concept memory by activating several of the concept's slots at 
the same time so as to uniquely identify the concept.

The selectors perform a dual purpose: they allow you to store 
and remove additional slot-filler associations, and also retrieve 
associations—that is, if you give one of a slot-filler pair, the 
network will supply the other.

Slot names are 2N-bit vectors, the first N  bits being the values 
of N  binary-valued microfeatures (one means the microfeature is 
present, zero means it is absent), and the second N  bits being the
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complement of the first N. This is to allow for some redundancy in 
the representation, since in DUCS's storage scheme there is the 
possibility that two or more patterns may try to use the same node.

The slot fillers are 2F bits long, F being the number of 
microfeatures in the fillers. They are represented in the same way as 
the slot names. The selectors are 4Fx2R rectangular arrays of units, 
where R is a parameter of the system ranging between 0 and N. The 
degree of overlap between associations and thus the rate of errors in 
making associations is dependent on R and on the number of 
associations that are stored. To record the association between filler 
v (expressed as a bit vector) and slot name a, a pattern is stored in 
the selector units. For each bit v; in v, one bit is turned on in the
same column in the selector array, and also a bit is turned on in 
column i+2F. Which bit—k—in a given column is turned on is 
based on a randomly selected R-bit subset of the slot name vector a. 
The subsets are randomly chosen, but wired into the selector, one 
subset per column. Each subset can be interpreted as an R-bit binary 
number, to determine k. Positive connections are then made between 
the #-bit subsets and the &th bit in the column. All the bits in a given 
column inhibit one another, to form a winner-take-all network.

DUCS uses non-linear Hopfield-Tank units with symmetric 
connections, (see section 2.9) These units have variable gain, so that 
they do not initially rise very much in activation, but the gain rises 
after they receive some activation, and they become saturated after 
20 activation updates.

The creation of a slot-name-filler association creates a pattern 
in the selector. All the bits in the selector are then copied to the 
concept buffer in the same places; the concept buffer is the same size 
as the selector. The concept buffer's contents is then used as input to 
the concept memory. The concept buffer serves as a connector 
between the concept memory and the selectors.

The concept memory is an associative memory following 
Willshaw (1981). (see section 2.7). Willshaw's net is useful for 
storing associations between binary vectors. In this case, each 
concept is viewed as a one-dimensional vector of length 4Fx2R and 
Willshaw's memory is used as an auto-associator to complete 
incomplete patterns. Incomplete patterns are created in the selector 
units by presentation of one or more slot name/filler pairs. These 
patterns are copied to the concept buffer, which in turn uses the 
concept memory to retrieve the concept.
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When a particular pattern is clamped into the slot name units, 
the combination of the activation from these units and from the 
concept buffer causes the selector units to become activated. This 
process works even if there is not exactly correct input on the slot 
name, because there is redundancy in the representation of the slot 
filler. Since each bit is redundantly represented four times in the 
code for the filler, and since each of these bits is associated with a 
different R -bit subset of the slot name, and since these subsets, if 
R < < N , are likely to be disjoint, an error in the slot name will 
probably not affect more than one of the subsets. Since each column 
unit in the selector array that is activated by a particular bit in the 
slot filler is connected positively to all the other three bits that are 
also activated by that slot filler, if one of the bits is not turned on, 
and another bit in its column is turned on instead, due to an error, 
the other three bits will activate it to such an extent so that that the 
original bit will win out over the other activated bit in the column.

For instance, Touretzky gives the example of trying to 
retrieve the value of an elephant's "trunk" slot using the pattern for 
"nose". The slot name pattern "trunk" will most likely replace the 
name "nose", because there is no slot for nose, and so trunk's filler 
will be retrieved, and it will reinforce the pattern for trunk.

Of course, the weights have to be set in such a way so that this 
works properly. All the weights in DUCS are set in advance, and are 
based on various parameters of the model, such as F, R, and N. Thus 
updates involve only changes in activation. Connections are 
symmetric; that is, if node a is connected to node b, a reverse 
connection exists as well. There are inhibatory connections between 
a slot filler bit v/ and the bit vi+f which represents its complement; 
similiarly, there are inhibatory connections between a slot name bit 
ai and ai+N. There are exhitatory connections between a bit in the 
selector and the corresponding bit in the concept buffer. Each bit in 
the selector is also, as mentioned above, positively connected to R 
bits in the slot name. Each selector bit in column i is positively 
connected to the slot filler bit in that column as well as the 
redundant representation of that bit in column i+2F, and negatively 
connected to the complementary bits in columns i+F and i+3F. All 
the selector bits in a particular column inhibit one another, since 
only one of them should be activated after relaxation. Relaxation 
leads to the multiple satisfaction of all the constraints embodied in 
the foregoing connections.
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DUCS is, as a Touretzky points out, a two level architecture. 
At the bottom level, slot names are used to retrieve fillers; at the top 
level, slot name/filler pairs are used to retrieve concepts, consisting 
of whole frames. Both of these processes are basic to a frame-based 
view of cognition. Touretzky contrasts his approach to that of 
Derthick (1987), in which constraints between microfeatures 
composing filler or names are built-in; for instance, the presence of 
the microfeature "human" would imply the presence of the 
microfeatures animate and mammal. In DUCS, these constraints are 
implicit in the connections to the selector units.

4.4. Storing Schemata with a
Complex Neural Architecture
Dolan and Dyer (1987) propose a scheme for implementing 

schemata in a connectionist network. They adopt a structured, 
functional approach to implementing connectionist models. They 
model a system with a complex architecture, and replace functional 
parts of the architecture with neural networks that perform the 
function in question.

They note that connectionist models can be classified along the 
dimension of the degree to which they are are decomposed into 
functionally differentiated parts. On the one hand we have systems 
of units, like those of Hopfield, which are relatively homogeneous 
with respect to connection patterns and neuron behavior. Other 
models, such as that of Hinton (1986), allow for differentiation of 
the larger network into groups of units, which each have their own 
purposes. Dolan and Dyer argue that these more structured systems 
lose none of the emergent properties associated with the less 
structured systems, but gain some capabilities. These capabilities are 
gained, I might add, at the cost of designing a network to be specific 
to a particular task.

Dolan and Dyer's system is called CRAM, and its goal is to 
understand fables (short stories). It performs recognition and 
instantiation of schemata and binding of roles in these schemata. The 
schemata that they use are similar to the scripts used by Schank and 
Abelson (1977) in their story-understanding efforts.

When a character in a story is recognized as playing some 
role in a schema, then the rest of the schema must be instantiated in 
order to fill other roles and comprehend the rest of the story.
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Their system is 
d iv id ed  in to  fo u r 
com ponen ts: schem a 
memory, working memory, 
procedural memory, and a 
role binder (see Figure 4.2).
The procedural memory, 
which resembles Touretzky 
and H inton 's (1988) 
production system (see 
section 3.2), is divided into 2 components, the clause detectors and 
the rule detectors.

The schema memory contains many winner-take-all 
subnetworks. Each of the subnetworks is connected to the others. 
Each node in the memory represents an entire schema. Inheritance is 
implemented by strong positive weights on connections between 
nodes representing superclasses and nodes representing subclasses. 
All of the subclasses of a given superclass are in the same winner- 
take-all network, since they are mutually exclusive. For instance, if 
a mammal is a dog, it is not also a cat. Exceptions in inheritance are 
implemented as strong negative connections between schema nodes.

Dolan and Dyer use a feature representation of symbols as bit 
strings, similar to that used by McClelland and Kawamoto (1986b). 
In this scheme, each concept is represented by a string of bits 
indicating, for each of a series of features, whether or not that 
feature is present in the concept. They initialize their schemata with 
prototype tokens filling the roles. The idea behind this is to allow 
for default information to fill roles until more specific information 
comes in. When the actual role-filler replaces the prototype, some 
of the prototype's subfeatures—those that do not conflict with the 
new token—are retained.

They borrow the concept of the unit cube from Hinton and his 
co-workers (1986a). The unit cube is useful for representing binary 
relations. In this scheme, a cube is created of units having, in each of 
its three dimensions, respectively, the number of bits found in the 
representation for the relation and its two operands, each of which is 
a symbol represented as described above. Each unit in the cube has a 
value that is a three-way conjunction of the value found on the 
respective bits for the three-bit vectors in the relation. This allows 
for the storage of many relations in a single cube of units. This is 
the design that they used to store relations in their working memory.

Figure 4.2 The architecture of CRAM (Dolan 
and Dyer 1987). Reprinted by permission.
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When new assertions enter the working memory, they are also 
put into a set of units that hold the input relation. These units are 
input to a unit cube called the probe network. The purpose of the 
probe network is to retrieve whatever was previously bound to the 
particular role whose value is being input.

For instance, if we have, for a particular restaurant schema, 
the role customer, filled by John, this may be expressed as the triple 
(restaurant customer John), and the first two places (restaurant 
customer) are input to the probe network. The probe network is 
represented by conjunctive coding in a unit cube as described above. 
The old binding, say man, for the customer role, may be readily 
extracted as a bit vector, because, looking along the dimension of the 
third symbol of the triple, the unit cube will contain the two 
dimensional conjunctive coding of the first two two symbols in each 
relation at each layer of the unit cube in which the third symbol's 
value is one.

This old binding is used as a key to look up in the working 
memory all the relations in which it is contained. These relations are 
stored, one at a time as they are extracted, in a unit cube called the 
3-d probe network. They are projected into a two-dimensional 
image that represents conjunctively the first two symbols in each 
relation; this is then projected into a 3-d network using the new 
binding, to represent the new relation. This relation is then inserted 
into the working memory in place of the one containing the old 
binding.

Queries to the working memory work basically as follows; bit 
k in the third symbol will be on if bits i and j  are on and bit ijk in 
the cube is on. This design for a working memory differs from that 
of Touretzky and Hinton (1985) (see section 3.2), in which triples 
representing relations are represented by randomly selected 
receptive fields in a set of units.

There are exhitatory connections between nodes in the schema 
memory and nodes in the working memory that represent relations 
that form part of the schema represented by a given schema node. 
This allows the insertion of assertions into the working memory to 
trigger a particular schema, and vice versa.

Dolan and Dyer note that this type of treatment of symbolic 
representation in schemata goes against two dearly-held assumptions 
of the physical symbol system hypothesis (PSSH) (Newell 1980). 
The first assumption is that it is possible to make arbitrarily finely 
graded distinctions between symbols. This is not possible in their
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system, since everything that could distinguish between two symbols 
must be encoded in the symbols' representations. Secondly, contrary 
to the PSSH, variables can no longer be abstract entities used merely 
to show relationships between slots in a schema, but must be 
represented in the same way as their values. Thus the type/token 
distinction disappears.

Another important difference between the connectionist 
implementation of schemata and the conventional implementation is 
the absence of pointers in the neural network. One solution to this, 
Dolan and Dyer note, is to represent pointers by symbols, as 
Touretzky does in BoltzCONS (see section 2.32). For instance, the 
list (A (B C)) would be represented by (x A y) (y B C), where x and 
y are symbols representing pointers. The other alternative that 
Dolan and Dyer suggest is to use intermediate names for structures. 
For instance, the recursive frame

(family-1 mother Sue 
father Bob

mother’s-family (family-2 mother alice
father joe  
son herb 
daughter sue)

etc.

would be represented as

(family-1 mother sue)
(family-1 father Bob)
(family-1 mother's-family family-2)
(family-2 mother alice)
(family-2 father joe)
(family-2 son herb)
(family-2 daughter sue) 
etc.

This allows the decomposition of arbitrarily complex frame 
structures into triples so that they can be represented in a 
connectionist working memory, like that used by Dolan and Dyer, 
or Touretzky and Hinton.
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4.5. Learning Microfeatures for
Knowledge Representation
Mikkulainen and Dyer (1988) approach the problem of how to 

represent concepts in a neural network. They contrast their work 
with that of McClelland and Kawamoto (1986b), in which semantic 
microfeatures, chosen in advance, were used to represent concepts 
(see section 7.6). The problem with this approach is that it is difficult 
to see a principled way of choosing which microfeatures one should 
use. Often the microfeatures chosen are themselves complex 
concepts that need to be decomposed, such as "human" or "animate".

Another way to encode concepts is the five layer back- 
propagation network of Hinton (1986), in which there are is a layer 
of output units, a layer of input units, a layer of units that represent 
the output, a layer that represents the input, and a layer of hidden 
units in the middle (see Figure 4.3). A single unit is on in each of the 
input and output layers, that is, a local representation is used. This is 
transformed to a distributed representation by using back- 
propagation to force layers 2 and 4 in the system to encode the input 
and output patterns respectively. There are many fewer units doing 
the encoding than are in the input and output layers—in fact there 
can be as few as log2n if the units are all binary-valued. This has the 
advantage over McClelland and Kawamoto’s scheme in that this 
allows compact representations without having to choose what the 
semantic microfeatures are before the fact.

Mikkulainen and Dyer 
extend this by allowing their 
architecture (which they call 
FGREP, for Forming Global 
R e p  resentations^ to 
remember what these 
representations are while they 
are being learned. They do 
this by adding a module to their network called the lexicon. The 
lexicon stores particular input and output patterns. For instance, in a 
language processing task, each word in the system is represented by a 
pattern in the lexicon. However, the pattern that is used changes over 
the course of the learning.

Their system has a network consisting of three layers: a layer 
of input units, a layer of output units, and a layer of hidden units, 
completely connected in a feed-forward fashion. Each of these units

lnpul .)m i n ■ 11 mi i mmi Mj i  lnpul
representation

Output
representation

Output

Figure 4.3 The five-layer network of Hinton 
(1986). Reprinted by permission from 
Mikkulainen and Dyer (1988).
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has a real-valued activation ranging from 0 to 1; the weights range 
between -1 and 1, and are also real-valued. Both the layer of input 
units and the output units can hold several "words" (patterns) from 
the lexicon, which is the other component of their system. The 
system uses back-propagation. The error signals, however, are back- 
propagated an additional step to change the input pattern. This 
change in the input pattern changes the representations of the 
patterns in the lexicon that formed the input pattern. The next time 
the (now altered) input pattern is presented, it will be closer to the 
old target output pattern. Of course, the output pattern itself will 
have changed, since it is also composed of patterns from the lexicon. 
Thus back-propagation is "shooting at a moving target", as the 
authors put it.

They applied this system to the problem of assigning roles to 
the sentence constituents that McClelland and Kawamoto used (see 
section 7.6). They used a subset of the sentences used in McClelland 
and Kawamoto's work, with the roles agent, act, patient, instrument, 
and modifier-of-patient, and the syntactic categories subject, verb, 
object, and object-of-with. There were 19 sentence generators of the 
type "the human ate", "the animal broke the fragile-object", etc.

The nouns in the system were classified into groups for the 
purpose of generating sentences; for instance, "plate" was classified 
as a "fragile-object", and "dog" as an animal, so the sentence "the 
dog broke the plate" was one of the sentences that was generated. In 
this sentence, the dog was assigned to the agent role, and the plate the 
patient role. In order to learn this role assignment, the patterns 
corresponding to "dog", "broke", and "plate" were concatenated on 
the input units in the slots reserved for subject, verb, and object (the 
object-of-"with" category is empty, in this case). At the same time, 
the patterns for "dog", "broke", and "plate" were put in the output 
units in the slots for "agent", "act", and "patient" (the output slots for 
"instrument" and "modifier" were empty.) Back-propagation was 
applied, changing the patterns for "dog", "broke", and "plate". The 
new patterns were then stored in the lexicon.

Each word was initially encoded with a random pattern of 12 
units. Over time, nouns that fell into the same class tended to evolve 
similar patterns. Of the 1553 sentences created by their sentence 
generators, using a small set of nouns, the system was trained on 
1515 sentences, and the remaining 38 were used to test the 
performance of the network.
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They tested the network both on these 38 novel sentences and 
on sentences that the network had seen before. Performance was 
good, resulting in correct role assignment in most cases, with role 
assignment being ambiguous in those cases in which words have 
more than one role assignment. For instance, they cite the word 
"bat", which can either be, as the kind of bat that is a flying animal, 
the agent of an action or, as the kind of bat used in baseball, the 
instrument of a "hitting" action. In this case, the role units are 
activated to the extent that this object tends to play one or the other 
role in the sentences given in learning. For instance, if "bat" is more 
frequently an instrument than an agent, the pattern for bat would 
tend to be dominated by the characteristics of the baseball bat. In this 
case, the system would not perform well with the bat used as agent.

There is little difference in performance between the novel 
and previously seen sentences. Because of the distributed nature of 
the representations, the system also exhibits graceful performance 
degradation with loss of units. Mikkulainen and Dyer refer to their 
representations as "holographic" because they do a reasonable job of 
classifying the words if some or even most of the units comprising 
the representation are omitted. Even a single unit exhibits the 
classification of the words nicely. They attempted to interpret each 
unit semantically as a microfeature, but were unable to do so—the 
units, most likely, were functioning as complex disjunctions and 
conjunctions of many of the microfeatures that are useful in 
partitioning the space of nouns.

They applied a merge clustering algorithm to the 
representations (Kohonen 1982), in which, at each time step, 
representations that were most similar to each other on a Euclidean 
distance metric were merged. The results confirmed the expected 
classifications; for instance, words representing food—e.g. "pasta" 
and "cheese" were merged early. They also got a feeling for the 
topological arrangement of the representations by reducing each 
representation, viewed as a 12-dimensional vector, to a two- 
dimensional vector using Kohonen's (1988) self-organizing feature 
map (see section 2.18). This showed them that ambiguous words such 
as bat and chicken (the latter viewed as food and as a live animal) are 
intermediate in representation between their two meanings. The 
exact distance between the word and its two meanings is distorted in 
the two-dimensional "collapsing" of the vector, but the topological 
relationships between representations are preserved.
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The main advantage of this system is its lexicon. However, the 
lexicon is a non-connectionist system as it stands, although it could 
probably be implemented in a connectionist system. In this work it 
acts more like just a conventional memory.

Because of this lexicon, this system—and other systems built 
using the FGREP architecture—can communicate with one another 
and become parts of a larger modular system. For instance, 
Mikkulainen and Dyer suggest that there could be another FGREP 
system that relates sequences of actions to causal relations, and that 
this system could take its "lexical" entries from the states of the 
hidden units in the case role system, thus encoding the "shallow 
semantics" (role semantics) compactly for the purposes of 
understanding the semantics of causation. On a lower level, the 
sentence-role system could communicate with syntactic/phonetic 
systems, to create a modular language understanding system. 
Building such systems is essential for performing comprehensive Al 
tasks.

4.6. Implementing Evidential Reasoning 
and Inheritance Hierarchies

Shastri (1988) has adopted ideas from semantic nets, 
evidential reasoning, and inheritance hierarchies to develop "A 
Connectionist Approach to Knowledge Representation". His goals 
are to eliminate the need for an external homunculus for responding 
to queries; instead he wants to have queries, which are expressed as 
patterns of activation in the network, directly elicit other concepts.

He wants to constrain the possible set of inferences that the 
network can form to those inferences that people seem to make 
automatically. These inferences include inheritance of class 
properties to instances of those classes, and recognition of class 
membership.

He wants, also, in his model, to incorporate knowledge about 
how things are correlated, to deal with things like exceptions. For 
instance, Shastri gives the example of the facts that Dick (Nixon) is a 
Quaker, Quakers tend to be pacifists, Dick is a Republican, and 
Republicans tend to be non-pacifists. If the facts "Quakers tend to 
be pacifists" and "Republicans tend to be non-pacifists" are 
expressed as all-or-none entailments, that is, "Quakers are pacifists" 
and "Republicans are non-pacifists", then there are conflicting ideas 
about Dick. If, however, the relationships are expressed as
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statistical correlations, based on experience, then the probability of 
Dick being a pacifist can be estimated by using rales to combine 
statistical evidence. This does not preclude the existence of some 
necessary truths, in which a proposition A implies another 
proposition B in all cases.

He defines his conceptual structure formally. A concept is 
similar to a frame, that is, it is a set of (attribute, value) pairs 
(Minsky 1975). There are two kinds of attributes: properties and 
structural links. Examples of properties are color, dimensions, and 
weight. Structural links are such relations as "is-a" (class 
membership), "is-a-part-of, and "occurs-during". The values of 
attributes are themselves concepts. Thus, in terms of logic, 
attributes correspond to 2-place predicates. N-place predicates can 
always be decomposed into 2-place predicates, in order to express 
arbitrarily complex relations.

He divides concepts into tokens and types—tokens correspond 
to perceptual instances of types (classes). His model also stores, for 
each attribute/value pair in a concept, the number of times that pair 
has been observed, so, for instance, for the concept "apple", the 
attribute/value pair color/red might have been observed 30 times 
and the pair color/green might have been observed 20 times. (More 
precisely, the ratios of the frequencies to the actual number of 
observations are stored.)

This frequency information is used in the probabilistic 
inference methods of the system. Is-a links are viewed as special in 
his system; they are relations between concepts, and are all-or-none; 
his system does not deal with fuzzy set membership (Zadeh 1973).

The frequency information can also be used to determine the 
most likely value for a property: it is simply the value with the 
highest frequency. Given a set of concepts, and the description of a 
concept in terms of attribute/value pairs, the frequency information 
can also be utilized to determine which of the concepts best fits the 
set of pairs.

The frequency distribution of the independent properties does 
not fully constrain the frequencies of combined properties. For 
instance, to use one of Shastri's examples, if we know that 30% of 
apples are sour, 70% are sweet, 60% are red, and 40% green, this 
does not determine what percentage are red and sweet, for instance. 
This may be formalized by having all the values of one property on 
one dimension of a matrix, and the values of the other on the other 
dimension, so that the cells in the matrix aij represent co-occurrence
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frequencies. Only the sums of the rows and columns are known, not 
the aij themselves. The aij matrix is referred to by Shastri as a 
macroconfiguration. Given no other information, it is most logical 
to assume the most likely macroconfiguration meeting the 
constraints on row and column sums. Shastri uses probability 
theory and a mathematical technique called Lagrange multipliers to 
show that aij = RiCj, where Ri and Cj are the row and column sums 
of the row and column in question. Shastri points out that this 
formula, which he calls the maximum entropy configuration, is 
equivalent to Bayesian inference theory if it is assumed that the 
probabilities of two attribute/value pairs are independent, because 
this means, for instance, that

P((red,sweet)/apple)=P(red/apple)P(sweet/apple)

If additional information about co-occurrence frequencies is known, 
then it can be incorporated as additional constraints to the maximum 
entropy method, which can still arrive at a solution.

Inheritance is used to determine the frequency distribution of 
values of a property for a subset if no better information is 
available. For instance, if we know that 20% of cars are blue, and 
we have no other information about the color distribution of 
Toyotas, then it is reasonable to assume that 20% of Toyotas are 
blue. Given an inheritance hierarchy, it is most reasonable to 
inherit this distribution information about a particular 
attribute/value pair for a concept A from that category which 
contains A most immediately; for instance if A is a Toyota, and 30% 
of Japanese cars are blue, but only 20% of cars in general are blue, 
then it makes more sense to assume that 30% of Toyotas are blue, 
since Toyotas are more similar to Japanese cars than they are to cars 
in general (one presumes). This is what Shastri calls the principle of 
relevance, that is, that the most relevant category is selected.

If a particular concept C is a member of a series of concepts 
Bi,...,BN such that none of the Bi are subsets of any of the others, 
and each of the Bi has a particular incidence of a property/value pair 
P (for instance, 20% of the members of Bi are red in color, in B2, 
30% are, etc.), the question is how to determine the property/value 
incidence for that value in C, e.g., how many of C are red. The set 
Bi of concepts relevant to C on concept P is referred to as r(C, P). 
He shows that the best estimate for the incidence of a particular 
attribute/value pair is estimated by combining values upwards in the
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conceptual hierarchy to determine the incidence of that 
property/value pair in the category 12 that is the most specific and 
includes all the Bi’s. This is recursively computed from the tree of 
categories whose root is Q  and whose leaves are the B{. Without 
going into the specifics, the incidence values amount to a form of 
weighted geometric average of all the frequency values for the given 
property/value pair for all the Bi's and the categories that subsume 
them, up to £2.

Given this formal theory of concepts and evidential reasoning, 
Shastri goes on to implement it in a connectionist network. He uses 
six kinds of nodes: (1-3) nodes representing concepts, properties and 
values, (4) binder nodes that bind concept, property, and value 
nodes together, (5) enable nodes (which allow the network to 
distinguish between recognition and inheritance queries, the two 
main types of queries that the system is designed to deal with), and 
(6) relay-nodes, which implement links between subset and superset 
nodes. (Shastri did this work at the University of Rochester, the 
home of complex nodes.)

Each of the concept nodes has six connection sites. The first 
site, which he calls the RELAY site, has connections to parents and 
children of the concept in the is-a hierarchy; each is-a relationship is 
represented by two links, one in each direction, between the parent 
and child nodes. The strength of the parent to child link is given by 
the ratio of the parent's frequency of occurrence divided by the 
child's. The weight of the child to parent link is the reciprocal of 
the parent to child link.

Binder nodes function in associating property/value pairs with 
concepts and concept/property pairs with values. The first kind of 
binder node has a special site where a property/value pair gives 
input, as well as a special site called inherit. All three of these 
inputs must be present in order for the binder node to give output to 
the relevant concept. Another set of binder nodes work similarly in 
associating concept/property pairs with values; they receive input 
from a special node called recognize. Inheritance is implemented in 
the following manner: if B is a superset of A that has property P, 
and there is no superset of A that is more specific than B that also 
has property P, then there is a connection between the binder node 
for the B -P  relationship and the binder node for the A -P  
relationship, with a weight equal to the ratio of the incidence of the 
properties in the two nodes. The concept nodes combine evidence, 
from the various concepts from which they are inheriting it, in the
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geometric fashion that was mentioned above; the ratios serve to 
make the incidences relative to one another so as to use them as 
fractions in computing the total evidence. The potential of a given 
node is the product of these fractions.

As well as having a potential, each node in his network has a 
binary state, inactive or active, so that only some nodes are active at 
any given time. Binding nodes are active only if they receive input 
from all three inputs mentioned above; concept nodes are active if 
they receive any input at all. The potential of a binding node 
reflects the incidence of the (concept, property, value) triple it 
represents; the potential of a concept node indicates to what degree 
that concept is present in the particular situation given to the 
network.

Shastri translated his "Quaker" example given above into a 
network. There are concept nodes corresponding to pacifist, non
pacifist, belief, person, Quaker, Republican, and Dick. Dick is a 
subset (an instance is equivalent to a subset in this model) of Quaker 
and Republican to some degree; these categories are in turn subsets 
of person. Pacifist and non-pacifist are both subsets of the concept 
belief. Person, Quaker, Republican, and Dick are all connected to 
the nodes pacifist and non-pacifist, via a binder node which is also 
connected to the property node "has belief'.

Thus, for concept Dick (as well as the other three concepts 
just mentioned), there is a property "has belief" which has the 
possible values pacifist and non-pacifist. The network is initialized 
by clamping (fixing as active) the nodes inherit, Dick, and "has 
belief'. This is a query as to what Dick's belief is. Because of the 
connections, after a short time the pacifist node settles to a potential 
of

(number of pacifist Quakers)(number of pacifist Republicans)
(number of persons with beliefs)(number of pacifists)

due to the various connections I have described above. The pacifist 
node receives input from the person node, which receives input 
from the Republican and Quaker nodes, which receives input from 
the Dick node. The connections are set up so that the pacifist node 
receives activation corresponding to the probability that a person is 
a Quaker Republican pacifist. A similar formula holds for the node 
corresponding to non-pacifism.
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He also applied his network formalism to problems involving 
inheritance from multiple categories. He built a system that 
represented fruits and vegetables as are edible things with the 
properties color and taste. Various things are known about the 
distribution of properties with respect both to instances of fruits and 
vegetables such as apples and carrots and the more general 
categories themselves. Shastri’s system could answer questions about 
the frequency distribution of properties for entities such as a red 
sweet fruit or vegetable. The system utilizes local and inherited 
information in arriving at the frequency distribution of entities it 
settles on.

Since Shastri's nodes are so complex, it is hard to see how 
they could be biologically implemented as single neurons; more 
likely they would have to be small clusters of neurons. It is also 
unclear how binding nodes, which effectively implement ternary 
relations, could come to have this function among a set of nodes that 
have come to represent concepts. There is a biologically plausible 
learning rule for the strength of connections between concept nodes: 
a Hebbian rule that strengthens the association between pairs of 
nodes that co-occur. Since Shastri's weights are based on relative 
frequency of occurrence, these are roughly compatible with such a 
rule.



5
Speech Recognition and 

Synthesis

5.1. Introduction
Speech recognition and synthesis are problems that naturally 

lend themselves to a connectionist analysis. For one thing, speech 
naturally is hierarchically structured, with different aspects of the 
speech signal combining to form phonemes, which in turn combine 
to form words. Speech is context- and speaker-dependent; phonemes 
and words sound different in different contexts and when spoken by 
different people. All of these characteristics of speech indicate that it 
is well suited to processing in a highly parallel, interactive and 
hierarchical fashion, all of which can be accomplished in a multi
layer connectionist network.

There are at least two ways that speech can be processed in a 
connectionist network. One is to lay the speech signal out spatially 
across a layer of input units, and allow different parts of the speech 
signal to interact via connections to units higher up in the network. 
This approach is taken by the TRACE system (McClelland & Elman, 
1986a), which is discussed in this chapter. The other method is to 
present only a time slice of the speech signal to the input units, and 
present subsequent slices in their turn to the same set of input units. 
In order to combine information from different time slices, it is 
necessary to build some sort of memory into the network, such as 
self-loops that allow internal units to retain older patterns of 
activation, or additional input units that duplicate the old activation 
pattern in the hidden units and recycle it through the network.

This second approach is taken by the work of Hopfield and 
Tank (1987) and that of Watrous and Shastri (1987). Hopfield and 
Tank view a speech signal as a sequence of states. State detectors,
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which are their input units, output based on the probability that that 
state is present at a given point in time. These signals are integrated 
over time to accomplish word recognition. Watrous and Shastri took 
an approach that is similar in spirit. Their input layer was 
comprised of 16 units, which represented the amplitudes of 16 
bandpass filters applied to the speech signal. Units above the input 
layer had self-links that allow temporal integration of the speech 
signal. Similar work was also done by Lang (1987).

Speech synthesis is an easier problem for computers than 
speech recognition is. This is because many different sequences of 
sounds can be interpreted as the same sequence of words, so speech 
production is relatively unconstrained, unlike recognition, which 
must give a single interpretation to its input. We consider two 
approaches to speech production in a connectionist network, that of 
Reggia and his co-workers (1988) and Sejnowski and Rosenberg's 
NETtalk (1986). These two systems take sharply different 
approaches to the production of speech from text. Reggia and his co- 
workers' system is based on the analysis of the process of reading 
aloud. Reggia and his co-workers model two complementary 
pathways for this process, one that maps strings of letters, called 
graphemes, to phonemes, and the other, which maps whole written 
words to their entire stored speech patterns. They built a system that 
employs both of these pathways in parallel.

Sejnowski and Rosenberg's NETtalk takes a more naive (or at 
least agnostic) approach to speech production. They allow the back- 
propagation algorithm to learn the relationship between text and 
speech, using a feed-forward perceptron consisting of input (text), 
hidden, and output (speech) layers. After the network had been 
trained, they analyzed its behavior to determine what it was paying 
attention to in the text in determining how it was pronounced, and 
discovered some interesting rules implicit in the network's behavior.

5.2 . Comparing Algorithms for Speech Recognition
Lippmann and Gold (1987) compared the performance of 

several different algorithms for speech recognition. They note that 
the best current algorithms use hidden Markov models (HMMs) 
(Rabiner & Juang 1986, Bahl, Jelinek & Mercer 1983) and they 
consider a neural network implementation of a particular HMM. 
HMMs are still considerably worse than people at speech 
recognition.
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Lippmann and Gold note that the best speech recognizers can 
typically be trained to recognize 100 words spoken in isolation with 
99% accuracy, and 2000 words spoken with pauses in between them, 
drawn from office memos (a constrained domain), with up to 95% 
accuracy. More advances need to be made before a machine will be 
able to successfully process connected speech from a variety of 
speakers. They note that neural networks offer hope of improving 
recognition performance, because they compute in parallel, and 
because they can learn from experience.

Speech recognition, as currently conceived, is basically a 
matching problem. Speech waveforms are broken down into chunks 
or segments, and each of these is spectrally analyzed using a fast 
Fourier transform, bandpass filters, or the like. These spectra are 
then compared to examplar word spectra, and a distance metric is 
computed. These spectra sequences have to be aligned temporally 
with the exemplar, because of variations in speaking rate between 
different people. The word is selected that receives the best 
matching score.

NEURAL NET CLASSIFIERS FOR MIXED PATTERNS

CONTINUOUS-VALUED INPUT
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Figure 5.1. Taxonomy of neural networks used in speech recognition (Lippmann 
and Gold 1987). Reprinted by permission.

Lippmann and Gold organize six neural network algorithms 
that are useful for this word classification task in a taxonomy (see 
Figure 5.1) They note that five of the six networks are close to
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algorithms that were used in earlier approaches to speech 
recognition, except that they are explicitly parallelized and adaptive.

They compare the performance of a two-, three-, and four- 
layer perceptron with a standard k-nearest neighbor classifier on the 
speech recognition task (Duda & Hart 1973). They used the back- 
propagation algorithm to train the perceptrons.

They used the Texas Instruments Isolated Word Data Base 
(Doddington & Shalk 1981). The five classifiers were trained on the 
spoken versions of the first seven monosyllabic numbers (one, two, 
three, four, five, six, and eight), each repeated ten times during 
training, and for each of the 16 individuals whose speech was 
digitized in the TI database. They used perceptron classifiers with a 
variety of different numbers of hidden units.

The k-nearest neighbor classifier performed best (6.0% 
classification error rate), then the best three layer perceptron 
(7.7%), then the Gaussian classifier (8.7%), and finally the two 
layer perceptron (14.4%). The addition of hidden units beyond 16 
per layer did not prove necessary, since no significant improvements 
in performance were achieved with this addition. Although the four 
layer perceptrons performed only about as well as the three-layer 
ones after their weights converged (using the back-propagation 
algorithm), the convergence was much faster, less than 2000 trials in 
all cases. The three layer nets having a large number of hidden units 
took over 6000 trials to converge, and the two layer perceptron took 
more than 29,000 trials to converge. If the classification process is 
viewed as a process of placing stimuli into regions in an n- 
dimensional feature space, the four layer perceptrons have a clear 
advantage in convergence, since they can more readily construct the 
required boundary surfaces in this space, apparently because the 
four layer perceptrons tend to start out with surfaces near the 
required ones.

5.3. Speech Recognition as Sequence Comparison
Hopfield and Tank (1987) designed an analog neural network 

that is capable of recognizing sequences of states. This problem is 
common to the analysis of visual motion, of speech, and of DNA 
sequences. It is the problem of interpreting sequences of stimuli by 
grouping them into adjacent sets which can be interpreted as a single 
category. For instance, if the word "hello" is one of the categories 
that one wants to recognize, then the problem is recognizing the
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individual phonemes in "hello" and then recognizing the series of 
phonemes as the word. Two instances of a particular word can vary 
in many ways; phonemes can be missing, they can be replaced by 
other, similar phonemes, or extra phonemes can be inserted.

Hopfield and Tank ground their work in the theory of 
sequence comparison (Sankoof & Kruskal 1983). If a , b, and g are 
the stimulus states forming a category (in the case of speech, 
phonemes or shorter speech chunks), and s ] ,  s2 , and s j  are the
categories (words in speech), composed of sequences of states, then 
there exists a probability distribution p a(t) defining the probability
that state a is found a time t before the end of the sequence 
comprising a particular category, say s ] . These probability 
distributions are of a Gaussian form, with their peaks being in the 
middle of the time interval in which the particular state is most 
likely to be found.

Hopfield and Tank's sequence recognition network is based on 
the fact that once we detect a particular state in the sequence, we 
know the probability distribution that describes when the sequence 
of states is going to end. This is because we know (from our 
detector) when the state ends, since we know when it began and how 
long it is, and we know the probability distribution of how long 
before the end of the sequence a state is supposed to occur, we can 
look at it the other way around, and that gives us the probability 
distribution of when the whole category is going to end.

If the sequence of states does in fact form an instance of a 
particular category s] ,  then all the probability distributions should 
add in phase, peaking at the time when s]  is supposed to end. No 
other category should receive as high a peak, because no other 
category will have its probability distributions add in phase. Thus 
the correct category should "win" a competition between all the 
categories.

Hopfield and Tank implement such a competition in a layered, 
feed-forward neural network in which input units that are state 
detectors are connected to output units that detect sequences 
(categories). The time-layered probability distribution is handled by 
having each state detector unit output, to those sequence units 
representing sequences in which that state is found, a signal that 
varies temporally according to the aforementioned probability 
distribution. The sequence recognition units are organized in a
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winner-take-all network, so that only one of them can become fully 
activated at once, the one receiving die most input.

Hopfield and Tank’s hardware implementation of this network 
was limited to the problem of recognizing a few words as spoken by 
a single speaker. They were forced to make Certain approximations 
to an ideal network, such as the fact that they did not allow arbitrary 
temporal probability distributions in their circuits, but used a fixed 
set of time delay functions.

During the operation of Hopfield and Tank’s machine, many 
of the input detector units are active but only a single output word 
characterization unit is active. The inputs were the results of 
measurements of signal strength at various frequencies along the 
audible frequency spectrum, along with an input representing the 
rate of change in the sound volume. The inputs are passed through a 
linear programming circuit which passes them all through to the 
output if they are all small, but if the inputs are large, it selects only 
one of them. Thus it acts as a winner-take-all network only for a 
strong input, allowing it to defeat other inputs. This makes sense, 
because a strong input represents a high degree of certainty. In any 
given time period, the linear programming circuit selects the input 
that corresponds to the strongest formant in the speech. (A formant 
is a single frequency-band component of a speech signal.) Hopfield 
and Tank note that their system is not very robust with respect to 
changes in pronunciation by the speaker which cause certain 
formants to be de-emphasized and others to be emphasized.

They hand-wired the connections in their circuit by measuring 
the outputs of the detectors as the words were input. If detector Pi 
was active at time t during the utterance of a word, a positive (time- 
delayed, according to the probability distribution) connection was 
made between it and the output unit corresponding to the word. All 
the other detectors were connected with inhibitory connections to 
the word, so that other words would inhibit this word, since they 
would excite the other detectors.

Hopfield and Tank achieved good performance on the eight 
words that their circuit was wired to handle. Their circuit was able 
to tolerate a 30% variation in the speed with which words were 
spoken.

They suggested the use of a modified Hebbian learning rule in 
order to improve network performance. The difference between 
their rule and the classical Hebb rule is that instead of changing the
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weight Ti.0 of the connection between input and output based on 
their cross-correlated activation strength V, with the formula

dTi-o=<Vi(t)Vo(t)>

the input response is replaced with the immediate time-delayed 
response of the input unit, effect(i) (the probability distribution 
function). Thus we have

& i-o=<effecti(t)V0(t)>

Hopfield and Tank suggest that the network can adapt to a particular 
speaker's variation, or possibly the variation between speakers, in 
the production of utterances, using this formula.

They note that their model is asynchronous; that is, it operates 
without a system clock. The analog circuitry of the machine allows 
irregularly spaced temporal events to contribute to the recognition 
of a word.

A model such as this could be made of other recognition 
processes that involve interpretation of a stream of data, notably 
natural language understanding. Provision would have to be handle 
recursive embedding in a sentence and long-distance relationships 
between constituents of sentences.

5.4. The Temporal Flow Model
Watrous and Shastri (1987) trained a connectionist model to 

learn phonetic features from sampled speech. Their first goal was to 
train the model to discriminate between the word pair "no" and 
"go", which are called a minimal pair since the two words differ on 
only one phonetic feature. They used one male and one female 
voice.

A three-layer connectionist network was used, which they call 
their temporal flow model. There were 16 input units, used to input 
the strength of the speech signal at various frequencies, produced by 
multiple bandpass filters. They called it the temporal flow model 
because the values presented at the input units change over time. 
Thus earlier input values were "remembered" by units higher up in 
the network because activation has flowed up from the input units. 
They used units with a sigmoid output function. Units in the second 
and third layers had links to themselves so that their values are
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maintained by positive self-feedback. This allows earlier activation 
flows to be "remembered" so that they can be integrated with later 
ones.

Watrous and Shastri used a modified form of the back- 
propagation algorithm to train their network, in order to handle the 
self-links (which a strictly feed-forward network does not have.)

In their first experiment, they had only two output units, 
which were all that were necessary for the "no"-"go" minimal pair 
discrimination. They trained the network using an output function 
that was linearly increasing in time; for instance, for "go", one unit 
was supposed to increase from 0.5 to 1.0, and the other to decrease 
from 0.5 to 0. This corresponded to the gradual integration of 
evidence over time. In the case of "no", the units were trained to 
have the opposite behavior.

When Watrous and Shastri trained their network, they did not 
get a monotonically decreasing error function, because the back- 
propagation algorithm was not devised to deal with continuously 
changing input conditions. Although the back-propagation algorithm 
did not proceed monotonically to a minimal error value, it did reach 
such a value, and the weights in the minimal network were the ones 
that they selected for further study. This network was able to clearly 
distinguish between the "go" and "no" stimuli; in the case of each 
one, one of the units had its activation driven down and the other 
one had it driven up, over the temporal course of the stimulus. The 
response was not the simple ramp that the network was trained on, 
but it clearly distinguished between the two stimuli, without needing 
to be told where in the temporal sequence of the stimulus to look for 
a distinguishing feature. Effectively, it had learned to detect the 
burst of sound that comes at the beginning of a "g" sound that 
distinguishes it from an "n"; thus the n was the default.

The logical extension of this experiment would be to a 
network that could distinguish between n stimuli using n-1 features. 
Their next experiment was to discriminate between three consonants 
(b, d and g) in one network with three output units, and six vowels 
(i,e,a,u,U,i) in another network with six output units. One wonders 
if they would have been able to achieve the same results with a 
binary encoding of the output on the output units, instead of a 
localist representation. Both networks used 16 hidden units.

They used as stimuli the 18 combinations of the consonants 
(b,d,g) with the vowels (i,e,a,u,U,j). They selected the transitional
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portion of each syllable, and used it alone as input, to reduce 
processing load.

In this experiment, they used a second-order optimization 
algorithm called the Broyden-Fletcher-Goldfard-Shanno algorithm 
(Fletcher 1980), which uses both the first and second derivatives of 
the error surface to achieve more rapid convergence to a minimum. 
Instead of a linear target function, such as that chosen in the 
"no"/"go" experiment, they used a Gaussian function shaped like a 
hump. This allowed unit response to decay back to a value of 0.5 
(neutral response) after each speech event, so that the network could 
readily be presented with a series of events.

Because of the second order optimization, they were able to 
achieve uniform gradient descent, along the error surface, to a 
minimum. They got network responses that were similar to the 
target functions presented during training. For each vowel and 
consonant, they were able to train each network so that one of the 
output units (in either the vowel or the consonant network) would 
respond to that sound.

Watrous and Shastri make three conclusions about their work: 
(1) The networks were able to learn the discrimination task without 
having to be shown both stimuli at once. (2) The consonant network 
was able to discriminate between three different consonants in the 
context of six different vowels, which is surprising given that these 
sounds look different in those different contexts. This bodes well for 
the ability to extend this approach to more complex stimuli. (3) The 
temporal-flow model is workable (which was not at all obvious at 
the outset).

5.5. The TRACE model
The TRACE model of speech understanding (McClelland & 

Elman 1986a) contains three levels of units, corresponding to words, 
phonemes, and features of speech. The model, in its feature units, 
represents a time slice of speech. For each feature, and each 
quantized time unit in the slice, there is an array of units 
representing the possible values of that feature. Thus, each feature 
has a two dimensional array of units associated with it. Three of the 
features are vocalization, diffuseness, and acuteness, each of which, 
at any point of the speech stream, can range from a low to a high 
value; there are other features as well. For each phoneme, and for 
every three time slices, there is also a unit, again forming a
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rectangular array with time on one dimension and the phonemes on 
the other. The phoneme detector units span six time slices, so they 
overlap with each other. This is also the case with the word 
detectors; the model is not very economical, especially because of the 
necessity for duplication of the word detectors.

McClelland and Elman refer to their entire network of units as 
the TRACE, because it is a trace of the analysis of the speech input. 
All units are active at all time slices, not just the units that directly 
respond to the current time slice; processing of previous time slices 
continues in parallel with the initial processing of the current time 
slice.

Excitatory connections exist between units within a level and 
in different levels that are mutually compatible. For instance, if a 
particular phoneme has a high value on a particular feature, say the 
vocalization, units representing high values on that feature have bi
directional excitatory connections to the unit for that feature at each 
time slice. Features, words or phonemes that are mutually 
incompatible have bi-directional inhibitory connections between 
them; for instance, at each time slice the units representing all the 
phonemes that are centered at that time slice inhibit one another in a 
winner-take-all network.

Context-sensitive effects are modeled by the use of 
multiplicative "gating" connections. They give the example of the 
fact that the phonemic features of a It/ are altered when it is then 
followed by an /i/; the unit for an /i/ at a given time slice therefore 
multiplicatively gates connections between feature detectors and the 
unit for /t/ at the previous time slice.

McClelland and Elman developed two versions of their model, 
TRACE I and TRACE II. TRACE I processed real speech, 
consonant-vowel pairs spoken by a male. It contained detectors for 
each of 15 input features; the input was divided into 5 millisecond 
time slices.

TRACE II was not concerned with feature detection and how 
features vary between phonemes and within a given phoneme 
depending on its context. Rather, they used "mock speech" which 
had the proper values for the features of each phoneme already set. 
TRACE II wanted to account for the way words influence phoneme 
perception top-down. TRACE II simplifies speech in that it only 
uses 7 input features at each time slice instead of 15. Each phoneme 
has a set (relative) value on each of these 7 features. Each phoneme 
takes 11 time slices, and its characteristic feature pattern grows in
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strength and then fades. The peaks of adjacent phonemes are six 
time slices apart. The phonemes that were supported are a subset of 
the full set of phonemes found in English; the system could detect 
211 words composed only of this subset.

The TRACE II model accounted well for psycholinguistic 
findings on phoneme perception. They did an experiment in which 
they presented a phoneme intermediate between "b" and "p", 
followed by the phonemes /l/, /u/, and /g/ as in plug. After the "u" 
phoneme is presented, the words "plug", "plus", "blush", and "blood" 
become activated, which are the only words that the system knows 
about that fit this pattern. When the "g" enters the system, "plug" 
wins the competition between these four words, and top-down 
reinforcement flows to the "b" phoneme, which wins the competition 
with the "p". Until then, the phoneme remains ambiguous. This 
winner-take-all behavior on the phoneme and word level models the 
categorical perception characteristic of people.

The TRACE model exhibits several other properties of human 
word perception. For instance, the model can perceive a word better 
if it is preceded by a valid word, so that it knows better where the 
boundary is between the two words. It cannot tell that a word has 
ended until somewhat into the next word, in the case when one word 
is the beginning of another (for example, bell and bellows). It is 
able to recover from a badly specified beginning of a word, even 
though the model is heavily dependent on word beginnings to start to 
activate words.

The major deficiency of the TRACE model, which McClelland 
and Elman admit, is the local nature of the model and the enormous 
number of units and connections that this entails. If connections and 
weights are learned such as the multiplicative, gating connections 
between a phoneme's features and the following phoneme mentioned 
earlier, it is difficult to find a mechanism to generalize this learning 
across the entire network. This problem is common to a lot of 
connectionist networks that use local representations; most handle it 
by doing the learning in some sort of central network, which then 
distributes it, in the manner of McClelland's (1985) Connection 
Information Distributor (CID). McClelland and Elman conclude that 
some combination of a central representation and local, temporally 
specific representation are required.
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5.6. A Model of the Print-to-speech
Transformation Process
Reggia, Marsland, and Berndt (1988) developed a 

connectionist model of the transformation of text to speech. There 
are two competing theories of how people do this. In one, each 
grapheme—one or more letters in written text that correspond to a 
phoneme—is mapped onto a phoneme, and the phonemes are then 
concatenated together in the speech stream. In the other, the entire 
word is read, and then its entire sound pattern, stored as part of 
lexical memory, is uttered. Evidence for the former method is that 
people have no trouble pronouncing non-words that look like words, 
e.g., "kint"; evidence for the latter is that people have no trouble 
pronouncing words with irregular spellings. These two methods 
need not be exclusive of one another; in fact, many people believe 
that both operate in parallel in the process of reading aloud.

Reggia and his co-workers embodied such a two-process 
model of reading in a network. The network has three types of 
nodes; grapheme nodes, word nodes, and phoneme nodes. 
Activation flows both directly from grapheme to phoneme nodes 
(which they call the grapheme-phoneme correspondence (GRC) 
route) and through word nodes (which they call the lexical route), 
that is, from grapheme to word to phoneme nodes. For each letter 
and phoneme position in the input or output stream, they had to 
represent all the possible values that each of these could take on. 
They used a study by Hanna and co-workers (1966) to arrive at a set 
of 168 graphemes and 48 phonemes for English. They also used this 
study to determine the possible grapheme-to-phoneme mappings. 
Each grapheme was connected to all the phoneme nodes in the same 
position that represented possible pronunciations for it. The weights 
on these connections were set to observed probabilities of each 
grapheme-phoneme pair, given the grapheme. Thus the weights on 
connections coming out of each grapheme node summed to one.

Grapheme group k in the input represented all those 
graphemes that participate in letter position it of a word. Each 
grapheme in group k was connected to all the words in which that 
grapheme was found in position k. If a given grapheme was 
connected in such a manner to n words, the strength of each 
connection was set to lln.

Thus the network is feed-forward, with all positive 
connections, and two distinct pathways for activation. This is what
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Reggia and his co-workers refer to as indirect competition, unlike 
other competitive schemes, such as in competitive learning (see 
sections 2.15-2.17), in which there is lateral inhibition between 
alternative nodes/pathways. This is more akin to integration of 
information from parallel sources. Their network is designed 
explicitly for this kind of competition.

They used the following activation update rule:

ai'= ki(ini - 2ai(l-ini))(l-ai)

where ai is the prior activation of the ith node, a i  is the activation 
after the update, and ini is the total input received at the node. This 
rule causes a winner-take-all behavior, as simulation demonstrates. 
When all the ai are initialized to zero, the ai always stay between 0 
and 1, because of the behavior of the above rule, and converge over 
time to one or the other extreme.

In the case of grapheme and phoneme nodes, the constant ki 
was set to 1; in the case of word nodes it was set to a logarithmic 
function of the prior probability of the word being present at all 
(based on the word’s frequency in English), thus it takes more 
evidence and more time for a less frequent word to be recognized 
and activated. The model was initialized with the grapheme nodes 
that were present in the input receiving an input of one and all 
others receiving zero input. The output of a given node along a 
given path is based on what proportion of activation should be sent 
to that node based on the competitive strength of that node. The 
competitive strength cik of a path from node i to node k is defined 
as

„ _ wm(t) ik — .

m

where m ranges over all the nodes to which node k is connected. 
Thus node k receives input based on not only the activation flow of 
the path from i to k, but also the relative strength of the path from i 
to k compared to all the other paths, from m to k. The output from 
i to k is: outik(t) = cik(t)ak(t). The input at each node is set based 
on all the outputs that it receives: ini(t) = 1-TIk (l-outik(t)). Reggia 
and his co-workers devised this numerical version of the "or"
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function, because it increases with an increase in any one of the 
outik.

They contrast this approach with that of ordinary feed
forward neural networks, in which the input to a node is almost 
always a weighted sum of the activations of the nodes inputting to it, 
which remains stable in time. Here nodes compete to receive input, 
those with activation tend to get more, and those with less tend to get 
less. Thus the system evolves—relaxes—to a stable state.

Each word receives input from each of n graphemes in it. 
The input from the grapheme number p  at node i is given by 
inip(t) = l-TIk(l- outik), where k ranges over the input nodes. This 
simulates the "or" function, since, ideally, only one of these input 
graphemes should be contributing, at each letter position. In order 
to combine the input from graphemes at different positions in a 
word, a product of all the inip for all values of p is used, because 
this simulates the "and" function—all graphemes must be present for 
a word to be present.

There is also the question of how the inputs to the phoneme 
(output) units should be combined. Each phoneme unit at each 
position receives input from grapheme units at the same position, as 
well as word units. Initially they combined these as simply the 
product ("and" function), but this did not account for the partial 
"or" nature of the print-to-sound transformation process mentioned 
earlier, like the ability to pronounce non-words such as "hink". 
Therefore, they changed the . function that combines information 
from the two sources to:

ini=iniAND(l-ai) + iniORai

where ini AND=iniWiniG and iniOR=\l-TlR(l-iniR). Here a/ is the 
activation of the ith phoneme unit, iniw is the input from the word 
units (calculated using the "or" function given above), iniG is the 
corresponding value from the grapheme units, iniOR is the "or" 
component, where R is either W or G—that is, iniOR is the "or" 
of the two values. The total formula emphasizes the "and" 
component when a/ is relatively de-activated and the "or" component 
otherwise. This modification allows the correct phonemes to 
saturate when the information coming from either the lexical route 
or the grapheme route is weak.

Reggia and his co-workers point out that the normal way that 
parallel sources of information "advise" one another is via top-down
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connections. In their model, it is done somewhat differently. 
Information is passed backward, but only in terms of the relative 
activation of different output and hidden units, which determines the 
forward flow of input. For instance, in a standard top-down 
implementation, word nodes might influence phoneme nodes, which 
then—top-down—would influence grapheme nodes. And vice 
versa. In their model, the fact that a phoneme node is receiving 
more activation from a word node will cause it to get more input 
and thus activation from a grapheme node as well. But because 
there are no explicit top-down connections, Reggia and his co- 
workers refer to their model as "indirectly interactive".

They develop a metric of word regularity that is based on the 
frequency of grapheme-phoneme mappings in a word. They define 
the regularity of a word as

jr (1.05-p0pi

R = -n --------

X , (1.05-Pi) 
i=i

where p i is the proportion of times that the grapheme in the ith 
position of the word represents the given phoneme (and n is the 
number of graphemes in the word). Thus R ranges between 0 and 
about 1; values close to 1 are highly regular and values close to zero 
are highly irregular. Reggia and his co-workers used a value of 
1.05 rather than 1 in the formula so that the cases in which p  equals 
1 would be counted.

They gave the example of presenting the network with the 
word "onion", in which each letter was a grapheme (in many words, 
more than one letter may form a grapheme). Initially, the word 
node corresponding to "union" was more strongly activated than that 
for "onion"; this was because "union" occurs more frequently in 
English than "onion". After relaxation, only the phonemes 
corresponding to the correct pronunciation of "onion" all became 
saturated. They ran their model with 64 words of varying 
frequency and regularity; in all these cases exactly the right set of 
phonemes became saturated after relaxation. As might be expected, 
this occurred most quickly with high-frequency regular words, and 
least quickly with low-frequency irregular words, with high- 
frequency irregular words, and then low-frequency regular words,
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coming in between. Frequency and regularity, as well as the two of 
them combined, all produced statistically highly significant 
differences in the time required to reach saturation, based on 
analysis of variance.

Reggia and his co-workers experimented with presenting non
words to the model. Often not all the phonemes in the output were 
saturated. Moreover, these non-words were subject to interferences 
in their pronunciation from orthographically similar words which 
would not have occurred if the model had only performed the 
grapheme-to-phoneme mapping.

A theory of some forms of dyslexia is that one of the two 
routes from printed text to speech is disrupted. Reggia and his co
workers tested the implications of this by turning off the grapheme- 
to-phoneme portion of their model, leaving only the lexical 
component. They presented the same 64 words as before, and again 
all the correct phonemes were activated. As one might expect in this 
case, only word frequency played a role in the speed at which the 
system converged to a solution, not word regularity. Also, as might 
be expected, this network had much more trouble with non-words.

When they turned off the word portion of the model, many 
irregular words were pronounced in a regular manner. This "over- 
regularization" is typical of surface dyslexia.

Reggia and his co-workers feel that their work is significant 
in two ways: (1) It provides a mechanism for competitive activation 
along multiple pathways that does not explicitly involve inhibitory 
links and (2) It provides a detailed, localist model of the print-to- 
sound transformation that accounts for dyslexia, unlike NETtalk (see 
the next section), which is a distributed model and uses back- 
propagation learning.

5.7. NETtalk: Reading Aloud with
a Three-Layer Perceptron
One of the earliest and best-known applications of the error 

back-propagation algorithm (see section 2.12) was to the problem of 
pronouncing printed text. Sejnowski and Rosenberg (1987) 
developed their NETtalk system for this problem.

The NETtalk system consists of three layers of units in a feed
forward network. The bottom layer consists of units that represent 
seven letters. Each letter is represented by a group of 29 units in 
which exactly one unit is activated. 26 of the units in this group
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constitute a local (unary) representation for the alphabet, and 3 
designate punctuation and word boundaries. There are 203 (7*29) 
input units.

The goal of the network is to output the correct representation 
for the phoneme corresponding to the central letter of the seven 
being presented. The other six surrounding letters provide clues to 
its pronunciation. Sejnowski and Rosenberg observe that most of the 
information as to the pronunciation of a letter can be found in its 
immediate context. They would have used a larger window than 7 
letters if computational resources had been sufficient, but they found 
that 7 was sufficient to capture most context information.

While they use a local representation for their input, they use a 
distributed representation for their output. Each phoneme is 
represented by a set of 26 articulatory feature units, as well as three 
units to denote stress and syllable boundaries. Thus there are 29 
output units.

There are also 80 hidden units. Each of the 203 input units is 
connected to each of the 80 hidden units. Each of these, in its turn, is 
connected to the 29 output units. They used back-propagation and a 
sigmoid activation function for their units.

As learning proceeded, the seven letters represented in the 
input units functioned as a sliding "window" into the text that was 
used for training. Sejnowski and Rosenberg used two corpuses of 
text for the training. The first was a phonetically transcribed speech 
of a child in first grade; the second was drawn from Webster's 
Pocket Dictionary. Each of these corpuses contained paired text- 
phoneme information for use during learning.

The first corpus contained 1024 words. Performance 
improved rapidly at the beginning of training, and then leveled off. 
Early on, the system distinguished between vowels and consonants, 
and then made more subtle distinctions. The system performed better 
at placing stress than at finding the exact phoneme. Errors often 
resulted from the confusion of similar phonemes. The system had a 
learning curve that followed the power law characteristic of human 
subjects (Rosenbloom & Newell 1986). After 50 passes through the 
corpus, the system achieved 95% correct performance.

To gauge generalization performance, the trained network was 
tested on an additional 439 words from the same speaker. It achieved 
78% correct performance. They found that the more words the 
system was trained on, the better generalization performance it 
achieved.
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They introduced noise into the weights; they produced 
degradation in performance commensurate with the amount of noise 
introduced. The degradation was gradual. The network recovers 
quickly upon retraining if the noise introduced is not too great.

They used the second corpus, from Webster's Pocket 
Dictionary, to test the effect on performance of the number of 
hidden units. 1000 of the most frequently occurring (and thus also 
the most irregular in pronunciation) words in English were selected 
from this dictionary and used for training. With no hidden units, just 
direct connections between the input and output units, performance 
reached a plateau at 82% correct. With 120 hidden units, 98% 
performance was achieved; varying the number of hidden units 
between 0 and 120 led to performance between 82% and 98%. They 
also tried systems with more than one hidden layer of units. For 
instance, a four-layer system with two hidden layers of 80 units each, 
which had about as many weights as the system with one hidden layer 
of 120 hidden units, had asymptotic performance on the training set 
which was about equal to the 120-unit system.

They compare NETtalk with non-connectionist approaches to 
speech synthesis, which typically use a look-up table, which is a 
dictionary that contains the pronunciation of each word. NETtalk, 
functioning with 80 hidden units, requires 18,629 weights. If each 
weight is allocated 4 bits, this is a total of about 80,000 bits. The 
dictionary of 20,012 words requires about two million bits of 
storage. The reason NETtalk can achieve such a reduction is because 
of the substantial redundancy in the pronunciation of English.

They do not claim that NETtalk represents a good model of 
speech production in people. People learn to speak and then to read; 
NETtalk learns both at once. Also, the 7-letter "window" for 
establishing context does not accurately model the wider range of 
information available to the human reader (including information 
drawn from linguistic sources other than phonetics.)

Rosenberg (1987) took a close look at NETTalk's internal 
representations in order to determine exactly what features of the 
input it was detecting in effecting the transformation from text to 
speech. One of the first things that Rosenberg wanted to find out 
was whether NETTalk divided its internal knowledge into two 
sources: a source of lexical pronunciation knowledge and source of 
grapheme pronunciation knowledge, like that done by the system of 
Reggia and his co-workers (see the last section)
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He used factor analysis, which attempts to account for 
variables in terms of a linear combination of underlying variables, 
and cluster analysis, which iteratively groups items into continually 
more general clusters, in his investigation of the model.

NETtalk, in its 80 hidden unit version, has about 20% of its 
hidden units highly activated, and the rest relatively inactivated, at 
any given time.

Rosenberg wanted to classify the patterns of hidden unit 
activation that resulted in each output phoneme. To do this, he 
averaged the activation of these units over many occurrences—those 
found in 1000 words—for each phoneme. He then had a good 
representation of the average hidden unit pattern of that phoneme. 
This hidden unit vector was computed for each of 48 phonemes. 
Correlation coefficients were computed for each pair of phonemes, 
to create a 48x48 matrix.

These coefficients were then used in a hierarchical clustering 
analysis in which the most similar pairs of phonemes, judged by the 
correlations, were grouped together first, then progressively less 
similar ones. These led to different results with respect to the 
vowels and consonants. Vowels were classified mainly on the basis 
of their place of articulation. For instance, vowels were divided first 
on the basis of whether the tongue is toward the front or the back of 
the mouth when they are pronounced. Within these divisions, they 
were further divided into those for which the tongue is high in the 
mouth, and those for which it is low.

The consonant phoneme groupings were more related to the 
way they are written than their place of articulation. For instance, 
one cluster is around the possible pronunciations of the letter t: fT/, 
ID/, /C/, and /S/. Other groupings are around the possible 
pronunciations of x, of m, of s, of n, of p, and of g.

Rosenberg was able to account for 68% of the total variance in 
ten vowels using three factors from factor analysis. Two of these 
factors roughly correspond to the place of articulation in the mouth, 
in that UJ and /i/ have high values on one of the factors and they are 
articulated near the back. The third factor accounts for the height of 
the vowel; the low vowels Id, !&!, and /<§>/ have high values on this 
factor. Thus his results from factor analysis basically duplicated the 
results from hierarchical clustering.

These analyses revealed an important fact about NETtalk; that 
it uses its hidden units in distinctively different manner for vowels 
and consonants; patterns for vowels are similar if they have similar
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heights or places of articulation, whereas patterns for consonants are 
similar if they correspond to alternative pronunciations of input 
letters.



6
Visual Perception and 

Pattern Recognition

6.1. Introduction
Approaches to visual perception in the connectionist paradigm 

have been very eclectic. There are two basic ways one can recognize 
objects, depending on how the object is represented. One way 
objects can be represented is as line drawings. Recognition of line 
drawings of various types has long been an active area of research in 
AI; for some examples, see Huffman (1971), Clowes (1971), and 
Waltz (1975). Sabbah (1985) extended this work into the 
connectionist research paradigm, using large numbers of local units 
to represent objects at various levels of complexity, such as lines, 
angles, and faces.

The other main way object recognition can be accomplished is 
by using input that is much like a photograph, that is, that is 
represented as an array of gray-level values. (Of course, there is a 
whole range of possible inputs between a line drawing and a 
photograph.) Machine vision using photographic input is most 
realistic, as such an input is similar to what people have to deal 
within their visual field. As in the case of line drawings, the most 
successful approaches to scene understanding has been hierarchical; 
simple features detected at the lowest level are then combined into 
more complex features. This is the approach taken by Honavar and 
Uhr (1987) with their recognition cones. These structures are 
roughly cone-shaped networks of several layers; they have fewer 
units and detect more complex features as one goes up in the network 
from the input. Since the number of units tapers off as you get 
further from the input, these networks are cone-shaped. Each unit in
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the network has a receptive field consisting of connections to units 
below it; the weights are learned through back-propagation. 
Honavar and Uhr also introduce a technique they call generation, 
whereby units can change their receptive fields adaptively to 
improve performance. Generation is a form of learning. By 
combining hierarchy, generation, and learning of weights, Honavar 
and Uhr are able to recognize a variety of simple two dimensional 
objects.

Beyond general object recognition, another area to which 
connectionist systems have been applied is the modeling of human 
visual perceptual phenomena. Two of the most important such 
phenomena are: (1) The separation of a visual field into figure and 
ground, when one has a simple visual field consisting of a dark 
continuous "field" against a light "ground". (2) The perception of an 
object in a position-independent manner, coupled with its position. 
The primate perceptual system appears to separate the tasks of 
determining what an object is and where it is in the visual field. 
Kienker and his co-workers (1986) attacked the problem of devising 
a connectionist system to separate figure and ground. Rueckl and his 
co-workers (1988) devised a neural network to explain why primates 
process where an object is, and what it is, separately.

Finally, as a transition to chapter 7, which is on language 
understanding, we discuss the work of Lakoff (1988) and that of 
Regier (1988) on linking visual and verbal semantics. In the 
development of a child, he or she leams to recognize the objects in 
the visual world at the same time as he or she is learning their 
names.

Central to Lakoff s conception of the linkage between the 
world of objects and language is the concept of cognitive topology; 
topological relationships between objects in the world is central to 
understanding the meaning of simple prepositions such as in, around, 
and towards. Also, the concept of motion is central to the semantics 
of many verbs. For example the phrase "Nadia got over Tomas" 
refers to Tomas as a metaphorical "obstacle" on Nadia's life "path". 
Regier shows how these simple concepts can be detected by a neural 
network.

6.2. Interpreting Origami Figures
Sabbah (1985) applied a connectionist model to a famous 

problem domain in computer vision, "origami world", originally
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studied by Kanade (Kanade 1980). Origami world is a 
generalization of the famous blocks-world made famous by Huffman 
(1971), Clowes (1971), and Waltz (1975). An object in Origami 
world is composed of surfaces expressed as line drawings such as in 
Figure 6.1; blocks-world consists only of solid objects, as in Figure
6.2. Thus the line that the arrow points to in, Figure 6.1, would not 
be allowed in blocks world, since it cannot be interpreted in terms 
of solid objects alone. Objects in origami world, although they must 
be formed out of flat surfaces, include complex objects such as the 
Origami duck (Figure 6.3).

Sabbah uses a set of 
param eter spaces to 
represent the different levels 
of object recognition in his 
model. A parameter space is 
simply a set of local units 
that each corresponds to a 
particular value of a vector 
of parameters. At the lowest 
level, edge segments are 
represented. Edge extraction 
is not included in Sabbah's 
model, but has been the 
object of considerable study 
(Rosenfeld & Kak 1976). Figure 6.1. An object in Origami world. 
There are relaxation methods
for detecting edges, which can readily be adapted to neural network 
implementations.

At a higher level, lines are represented as collections of edges 
that line up with one another. In order to be noise-tolerant, Sabbah 
allows lines to be composed of edges that have gaps between them. 
Rays are half-lines. Rays are critical in defining the various joints in 
an origami figure.

Sabbah has two kinds of joints in his scheme, 1-joints and t- 
joints. L-joints (so called because two rays come together at such a 
joint to make an "L") represent comers of a face. T-joints represent 
points of possible occlusion, that is, where there is one face blocking 
another. In Figure 6.4, an 1-joint and a t-joint are shown. Sabbah 
also has a parameter space for c-joints, which are present when two 
or more partially visible faces meet. He also has a parameter space 
for skewed faces.
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In each parameter 
space, each particular entity 
is represented by a set of 
parameters which uniquely 
characterize it. Thus, for 
example, an 1-joint is defined 
by its location (two 
parameters), the angle of one 
of its rays relative to a 
coordinate axis in the image 
plane, and the angle between 
the rays of the 1-joint. Thus 
this parameter space is four
dimensional. The parameter 
space for skewed faces 
(which are parallelograms) is 
six-dimensional, since a skewed face can be represented by one 1- 
joint and the length of each of the 1-joint's rays.

Figure 6.2 An object in blocks world.

Figure 6.3. The Origami Duck. Its 
quacks are flat, too.

Sabbah's representations are 
local, not distributed. Since each 
parameter space has an infinite 
number of points, there are 
potentially an infinite number of 
nodes. Thus in any real 
implementation, the parameter 
must be partitioned into n- 
dimensional regions formed by a 
grid in n dimensions, and any 
feature in the input must activate a 
node corresponding to the interval in which it falls. Because of the 
high dimensionality of several of Sabbah's parameter spaces, large 
numbers of units are required.

Sabbah's parameter spaces are organized into a hierarchy. 
Nodes in a lower-level parameter space are connected with positive 
weights to higher-level nodes with which they are compatible. For 
instance, a particular 1-joint node is connected positively to all the 
nodes for all the skewed faces that are compatible with it, that is, 
that could possibly have it as a comer.

His model incorporates both bottom-up and top-down 
connections. An 1-joint reinforces all the skewed faces that are
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compatible with it, and a skewed face reinforces the specific four 1- 
joints that compose it. This top-down reinforcement is necessary 
because there are cases in which component features are obscured by 
occlusion or noise, yet the system still needs to infer their presence.

Sabbah's scheme was ___■—
inspired by the Hough ^
transform (Rosenfeld & Kak Ix. n .
1976), which is used for x.
edge detection. In this 
transform, each point in the 
image space "votes" for all 
the edges with which it is 
compatible. Those edges 
receiving many votes are 
inferred to be in the image.
A particular point is 
considered to be consistent 
with all of the edges that 
could pass through it. Figure 6.4. Vertices A and B marked on the

The Hough transform Origami world box. 
is similar to Sabbah's
hierarchy of units, in that units in Sabbah's scheme also "vote" for 
the higher level units with which they are compatible. Sabbah's is 
one of many connectionist systems which have borrowed ideas from 
earlier, non-connectionist, work in computer science and artificial 
intelligence.

Each of Sabbah's units has an activation level ( a l ) which 
ranges from 0 to 10 (the maximum is arbitrary). The initial rule 
that Sabbah used for each unit was

a n̂+l =a n̂+(^n+l )'(^n+l)

This formula was applied iteratively, in the manner of a relaxation; 
aln was the activation level of a given unit in the system on the nth
iteration. Initially nothing was activated except the lowest level 
nodes, which corresponded to perceived features.

All the connections between nodes are either excitatory or 
inhibitory. En+ j is the mean activation input of all the units that are 
connected to the unit in question by excitatory connections. In+1 is
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the largest activation of any unit that is connected in an inhibitory 
fashion.

Sabbah’s units had a tendency to saturate quickly, since any 
small amount of activation that they received accumulated over a 
series of iterations. To handle this, Sabbah added a noise threshold 
term, NT, to his equation:

a^n+l =aln+(En+l)~(In+l)~NT

This problem, Sabbah notes, could also have been handled by 
inhibitory connections between all the incompatible units on a 
particular level in his hierarchy (winner-take-all), but this was 
impractical to implement. Instead, he allows only units representing 
similar features to inhibit one another.

Sabbah's other problem stemmed from poor input. Under 
conditions of poor input, some units reach maximum activation 
while others lag behind. Sabbah fixed this by forcing the activation 
level to remain at maximum for a certain amount of time. In 
addition to this, he added normalization factors to En+ j  and In+1 
to increase the amount of time over which evidence can accumulate. 
Now his formula became:

aln+ l =aln+(En+pktimeHIn+ l ^ n h time )-NT

kuna and kinhn^  were both large.
Finally, he modified his last term (NT) to provide fast decay 

of a node's activation after saturation in the absence of top-down 
feedback and the presence of inhibition from other nodes, slow 
decay with no feedback and no inhibition, and no decay in the 
presence of feedback.

Sabbah tested his network with four examples. The first was 
with a complex object, the origami chair. Since the input is perfect, 
and only correct features are evoked at the lowest level, the network 
reaches the correct interpretation quickly; effectively it is 
functioning as a look-up table.

The next stimulus Sabbah presented to his system was a square 
with a comer obscured by a black noisy blotch (see Figure 6.6). In 
addition to detecting the three unobscured comers, the system 
detected several comers within the blotch. In the absence of top- 
down feedback from the higher-level node representing the face as a
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whole, these comers within the blotch decay. Initially, the system 
made a wrong decision as to what comer is present in the blotch, but 
this decision was inhibited by the correct choice, which was 
activated by top-down feedback.

Sabbah's third and fourth examples have to do with occlusion. 
In the third example, a solid is occluded by a rectangle; in the 
fourth, a box is occluded by itself (see Figures 6.5 and 6.7). The 
network reacts by activating all the possible faces that could be the 
occluded face in a "winner-take-all" network; the face that "wins" 
will get activation from t-joints (occlusion points) and 1-joints, and 
consideration will be given to the extent of the occlusion (candidate 
faces extending beyond the occlusion must be ruled out).

(left) Figure 6.5, box occluded by face, (center) Figure 6.6, face with noisy 
comer, (right) Figure 6.7, self-occluding box.

6.3. Recognition Cones
Honavar and Uhr (1988) propose a system for object 

recognition and classification that is unusual because the neural 
network topology varies as the learning proceeds; units and links are 
generated. They use a system with multiple layers wherein each 
neuron has a relatively small and local receptive field. They start 
with their concept of recognition cones (Uhr 1987, Honavar & Uhr

Recognition cones are inspired by both the human visual 
system and other hierarchical architectures in computer vision, such 
as pyramids (Uhr 1983, Burt 1984). They are composed of several 
layers of units; the number of units in a particular layer is a 
logarithmic function of the layer number. The resolution of the 
layers decreases logarithmically as one moves from the input layer 
upwards.

Typically each unit in a particular layer is connected to some 
local neighborhood of units in the layer below, and typically in a 
regular fashion; for instance, a 2x2 layer of units might be

1987).
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connected to a 4x4 layer below it by connecting each of the four 
units in the upper left comer of the 4x4 array to the upper left unit 
in the 2x2 array. Or, the arrays might have overlapping receptive 
fields, which would create a form of coarse coding.

Honavar and Uhr’s simulations involve both upward and 
downward connectivity. Because of the local receptive fields, units 
in a recognition cone system can compute a large variety of possible 
local image transforms (functions), such as traditional edge- 
detectors, and create a complex multi-resolution representation of an 
image. As you go up in the cone, more complex features are 
represented. They have been applied, using pre-designed 
architectures, to recognize noisy handwritten letters, place settings 
consisting of hand-drawn knives, plates, spoons, and forks and 
complex features (windows) in photographs of houses.

Each unit is viewed by Honavar and Uhr as a transform of its 
inputting units. Transforms are re-weighted using a variation of 
Rumelhart and co-workers' back-propagation algorithm. Honavar 
and Uhr suggest a heuristic to guide this process, which they call the 
minimal complexity heuristic. This is as follows: in order to 
perform a given pattern classification task, choose the simplest 
structure that is necessary to perform the classification, by 
minimizing the number of nodes, links, and/or layers.

In their simulation, they used a 32x32 bottom input layer; 
each layer above it reduced each dimension by two, to give five 
layers. Each unit computes a set of transforms. When a transform is 
selected for use in a particular layer, it is provided to all the units in 
that layer. The bottom input layer’s units are each presented with 
the outputs of eight edge detectors, spaced 45° apart.

Honavar and Uhr evaluate the performance of their network 
by keeping track of the percentage of correct responses for each 
pattern class, for the recent performance of the network. 
Transforms are randomly selected from a set of non-linear functions 
with the constraint that each transform should only draw on the 
receptive field of the unit it is associated with.

As the error is propagated back, from top to bottom, through 
the layers, we see which transforms are performing well at each 
layer. If the transforms at a particular level are performing badly, 
some of them may be pruned, and new random ones generation. 
Thus a sort of "natural selection" process occurs with the transforms 
(not unlike the NGS theory of Reeke and Edelman; see section 2.19).
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Generation of transforms is an independent learning method which 
can be used either by itself or in combination with a variety of 
learning rules-- supervised or unsupervised. (Honavar 1989)

Honavar and Uhr ran their simulation to recognize two classes 
of stimuli—letters (T,D, & E were used) and simple objects (an 
apple, a banana and a cup were used). Several versions of each 
stimulus were used, hand-drawn by different people. Their program 
achieved 100% classification accuracy after training when generation 
of new transforms was used, but only about 60-80% accuracy when 
it was not used. Their data seems to indicate that the generation of 
links in a selective fashion in a neural network can be a powerful 
technique in improving network performance. The question is, is 
generation of links, rather than simple weight change in a more 
highly connected network, a biologically plausible process? Recent 
neurophysical evidence has suggested that it is (Greenough & Bailey 
1988, Honavar 1989).

6.4. Separating Figure from Ground
Kienker, Sejnowski, Hinton, and Schumacher (1986) applied 

connectionism to the classic perceptual problem of separating figure 
from ground, using connectionist ideas. This perceptual process is 
illustrated by Rubin's famous illustration, containing two faces which 
form a vase, in which figure and ground are reversed (see Figure 
6.8). In one interpretation the black vase is in the foreground (the 
"figure" in "figure and ground) against a white field ("ground"); in 
the other interpretation, the two faces are the figures and the black 
field is ground. Kienker and his co-workers cite psychological 
experiments (Ullman 1984) which show that subjects can quickly 
(within a few tenths of a second) determine whether or not a dot 
shown in conjunction with a closed figure, is inside or outside of a 
the figure. This leads one to believe that figure-ground 
discrimination is a fairly basic perceptual process.

Kienker and his co-workers start not with literal image data 
but with slightly higher level information. The units are in several 
planes; each plane consists of a grid of units. One plane consists of 
"edge" units, that is, units representing edges in the image. Another 
plane consists of figure units, an array of units that determine 
whether or not a particular pixel in the image is in the figure. The 
determination of whether or not a particular pixel is in the figure is 
a function not only of the image itself but of "attention"; that is,
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some higher-level process will clamp some of the figure units to on, 
so as to attend to that particular part of the image, and bias the 
system into arriving at a figure containing those units. Shifting 
attention is what accounts for the shifting perception of the faces and 
the vase in the Rubin illustration.

The figure units were 
arranged in a 20x20 grid in their 
simulations. Weights ranged from 
-15 to +15, in integer values. Each 
unit is connected to its eight 
neighbors by excitatory 
connections, with a weight of +10.
Each location in the image has an 
edge unit for each orientation that 
is represented; in their simulation Figure 6.8. A famous illustration by 
only horizontal and vertical Rubin, in which figure and ground are 
orientations were supported. Each reversed between one interpretation and 
edge unit has connections to the another. Form Kienker et al. (1986). 
figure units in its immediate Reprinted by permission, 
neighborhood. The orientation of the edge unit does not represent 
the orientation of the edge itself, but rather represents the direction 
in which the figure can be found.

An edge unit reinforces (with a connection strength of +12) 
the figure unit it is immediately pointing towards, as well as the two 
units immediately flanking that unit (+10); it has negative 
connections with the unit it is pointing away from (-12) as well as the 
two units immediately flanking it (-10). All connections in their 
network are reciprocal.

Each edge unit inhibits (-10) the unit with the opposite 
orientation. Making edge units excite flanking units as well as the 
units that they directly point to allows edge gaps to exist in the 
image, without disrupting the figure/ground discrimination. They 
also connected pairs of edge units that could represent comers; units 
representing possible comers were connected with a positive weight 
(+5), and units representing impossible comers with a negative 
weight (-5) (see Figure 6.9).

Attention was implemented by training a Gaussian "spotlight" 
on a region in the figure units. A figure unit is distance d from the 
center of the attention received an excitatory input equal to

Ae-(d/s)2
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where A is the amplitude of the spotlight and a  the width of the 
spotlight.

Kienker and his co- Possible Impossible

workers use the Boltzmann
machine update rule to
perform relaxation in the
network (see section 2.10). In
the Boltzmann machine, the
weights are fixed. They use
simulated annealing on their
Boltzmann machine, whereby
the temperature T (which
corresponds to the amount of
noise that is allowed to affect Figure 6 9 Impossible and possible 
the network) is initially high combinations of edge units. From Kienker et
and is reduced gradually over aL <1988>- rePrin,ed h? I®”***- 
the course of the relaxation. The result of the relaxation is to 
establish a stable pattern in the figure units, so as to establish the 
discrimination between figure and ground.

Kienker and his co-workers tried their network out on a 
variety of shapes, ranging, in complexity, from a rectangle to a 
spiral. They performed 2000 random unit updates per iteration, 
since their system consists of 400 edge units in each of the four 
orientations, plus 400 figure units, for a total of 2000 units. Each 
unit can expect to be updated once, although due to the stochastic 
nature of the algorithm, some units will be updated more than once 
per iteration and some will not be updated at all. They carried out a 
maximum of 148 iterations over the course of the simulated 
annealing, over which the temperature was gradually reduced from 1 
to 0. However, most of the trials reached stable states long before 
148 iterations.

For a simple rectangle with all the edges specified, most of the 
trials resulted in convergence to a correct final state in under 40 
iterations. If only the comer edge units of this rectangle were 
specified, then most trials reached a correct final state within 60 
iterations. The increased time is required for the activation to 
spread properly and the border between figure and ground become 
properly established, in the absence of edge units. The ability of the 
network to create the correct interpretation of the figure, with only 
comers present, reflects human performance nicely. For a third
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input, a C-shaped closed figure, convergence to a solution occurred 
more slowly, because of the concave region on the inside of the C, 
which is reinforced by neighboring figure units, but not by 
neighboring edge units. For this figure, most trials stabilized before 
100 trials.

Kienker and his co-workers compared their stochastic 
algorithm with a deterministic (Hopfield) algorithm, with a strict 
binary threshold rule. The deterministic algorithm is only 
guaranteed to converge to a local minimum energy (see section 2.8). 
not a global minimum If there are no holes in the edges, then the 
deterministic algorithm is equivalent to a "spreading ink" algorithm; 
activation in the figure units spreads and is contained by the edge 
units. If there are holes in the edges, or the width of the Gaussian 
spotlight of attention is too large, activation will "leak" out of the 
contained figure. Thus, for a closed figure, the spotlight has to be 
finely focused on the figure itself, in order for the deterministic 
algorithm to work.

Kienker and his co-workers’ attempt to find the correct 
solution for an enclosed spiral failed in a majority of trials, using 
simulated annealing. If the cooling proceeds more slowly, they can 
anneal to the correct solution; one trial proceeded to a correct 
solution after 961 iterations.

They tried to introduce variability into the temperature 
distribution by introducing random factors, one per unit, that 
multiplied the global temperature to create a local temperature for 
each unit. This was closer to the behavior of a true physical system. 
However, this did not affect the network's performance to a 
significant extent.

6.5. Determining "What" and "Where" in a Visual Scene
Rueckl, Cave, and Kosslyn (1988) consider a classic problem 

in visual perception from a connectionist standpoint. This is the 
separation of the information about an object into (1) the location- 
independent description of the object, and (2) where it is in the visual 
field (and what view is given,, that is, as they term it, "what and 
where". The question that they address in this work is whether the 
methods of determining "what" and "where" are consolidated in a 
single mechanism ,or in two parallel mechanisms.

They constructed two systems to address this question. Both 
systems received input from a 5x5 array of binary-valued inputs.
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The different "objects" that could be formed each consisted of a 
pattern in a 3x3 grid. Each of these patterns could be centered on 
any of the 9 units in the 5x5 grid that were not on its edge. Only one 
pattern was present in the input at any given time. Thus the state of 
the input units could be completely described by a pair of numbers 
each having a value between 1 and 9, the first describing the shape of 
the stimulus and the second describing its location.

Rueckl and his co-workers used a three layer feed-forward 
system, in which the bottom layer consisted of the 25 input units, and 
in which there was a middle layer of 18 hidden units, and an output 
layer of 18 units. Nine of the output units described "where" and 
nine described "what", that is, one of the output units corresponded 
to each position and one corresponded to each shape. Thus a correct 
output pattern had exactly two output units activated, one of the 
"where" units and one of the "what" units, in a local representation.

The authors refer to their two systems as the "split" and 
"unsplit" systems. In both systems, all of the input units are 
connected to all of the hidden units. In the unsplit system, all the 
hidden units are connected to all of the output units as well. In the 
split system, the hidden units are divided into two groups of nine 
each, one group being completely connected to the 9 "where" output 
units, and the other group completely connected to the 9 "what" 
output units. Thus the number of connections in the split system was 
half that of the unsplit system. The split system, above the input 
units, was effectively two parallel systems

Rueckl and his co-workers trained both models on random 
sequences of input patterns in which all valid inputs were presented, 
using back-propagation to teach the model to arrive at the correct 
output. Both models learned the task, but the unsplit model learned 
it faster. After 300 learning cycles, the unsplit model was producing 
significantly less error than the split model. They suspected that this 
was due to the differences in the difficulty of learning the "what" and 
"where" tasks, so they looked at the sum-squared error in each of the 
two subsets of the output units, in each of the two models. It turned 
out that both models exhibited rapid and similar convergence on the 
units representing location, and the difference between the two 
models is mainly in the speed of convergence to the correct pattern 
on the output units signifying the shape of the stimulus. This led 
Rueckl and his co-workers to conclude that location was easier to 
learn, because the input patterns representing a given location were
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more similar to one another (in terms of shared activation) than the 
input patterns representing a given shape were to one another.

This in turn led them to consider dividing the hidden units 
between the two tasks in an asymmetrical way, so as to allocate more 
of the hidden units to determining shape. The "12-6" split model 
allocated 12 of the hidden units to shape and the remaining 6 to 
location. They tested this model against the original (9-9) model and 
15-3 and 14-4 models. They found that the 14-4 and 12-6 models 
converged to a solution significantly faster than the unsplit model, 
while the 9-9 and 15-3 models did worse. This clearly shows that a 
correct allocation of units to the two problems is critical; too few 
units allocated to either task leads to degraded performance.

They noticed that the unsplit model did better than any of the 
split models in the early phases of learning, although the 14-4 and 
12-6 models did better asymptotically. They attributed this to the 
fact that the unsplit model has more connections.

They explored the nature of the receptive fields of the hidden 
nodes. There were hidden nodes whose connections to the input units 
detected alternating stripes of activation and inhibition, in either a 
horizontal, diagonal, or vertical direction. These were useful in 
detecting shapes in a position-independent manner. Another group 
detected activation along the borders of the input array. Yet another 
group were sensitive to a single strip of input activation at some 
orientation Some nodes seemed to have no particular rime or reason 
to their receptive fields, and some were specialized to detect a 
localized configuration of features. All these types of hidden nodes, 
taken together, were able to provide the output units with 
information about "what".

The "where" hidden nodes included "border nodes", as above, 
as well as nodes with excitatory areas in the receptive fields. With 
few hidden nodes devoted to the "where" task, the size of these 
excitatory areas was large, because relatively coarse coding was 
necessitated. As more hidden units are assigned to the "where" task, 
eventually each node comes to represent only a single location in the 
input.

In the unsplit network, the hidden nodes had strong output 
connections to both the "what" nodes and the "where" nodes. The 
unsplit network did not spontaneously develop the specialization 
required by the split network. There were similar types of nodes, in 
terms of their receptive fields, in both the split and unsplit netwoiks, 
but their frequency distribution differed. There are more
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continuous-region detecting nodes in the unsplit system, suggesting to 
Rueckl and his co-workers that location was more important in the 
unsplit system.

They made a classification of the shapes by various properties. 
Does a shape have a single vertical or horizontal stripe? Is it skewed 
to the right, left, top or bottom borders of the visual field? Is it 
strongly horizontal or vertical (that is, does it have more than one 
horizontal or vertical stripe)? These classifications were based on 
the response specificities of particular hidden nodes. They used 
multi-dimensional scaling analysis of the weights (Shepard 1962) to 
show that single-stripe and border patterns are more important in the 
unsplit system compared to multiple stripes, which were more 
important in the split system. Thus they quantitatively showed the 
effect that they observed just by looking at the network itself 
directly.

The multiple stripe detectors were position-independent. Thus, 
their added importance in the split model indicated that the split 
model was more able to incorporate position-independent factors in 
the determination of what the shape of the stimulus was. The unsplit 
model was unable to do this because the hidden nodes were involved 
in computing both "what" and "where" spontaneously.

Rueckl and his co-workers argue that, in the unsplit model, the 
computational resources (hidden units) that could be allocated to 
improve performance on the shape task are, in the unsplit model, 
instead allocated to improve location performance, even though the 
shape task needs them more. This prevents the unsplit system from 
arriving at the solution arrived at by the best of the split systems, 
that it could have in principle arrived at, since it had all the 
connections of the split system, plus more.

Their experiments support their hypothesis that a neural 
system will more readily adapt to computing shape and position if it 
uses separate computational resources for each of these tasks, and 
provides a plausible explanation for why the brain does so. It also 
provides a plausible account of why the primate visual system 
devotes many more nerve cells to areas that compute shape than 
those that compute position.

They note that the requirement that shape and location 
information be available separately for later processing in other 
systems places no constraints on how these separate pieces of 
information are computed; they note that both the split and unsplit 
systems satisfy this criterion. Thus this criterion alone is no
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explanation as to why the brain devotes separate regions to the two 
tasks.

They note that the primate visual system is enormously more 
complex than their system, presumably because it has much more 
complex recognition tasks—many more shapes at many more 
positions. This raises the question: does their model "scale up" to 
this larger size? Further experiments may answer this question.
6.6. Linking Visual and Verbal Semantics

Lakoff (1988) makes an analogy between connectionist 
models and a variety of linguistic theory that he and others have been 
advocating, cognitive linguistics (Lakoff 1987, Langacker 1987). A 
central concept of cognitive linguistics is the idea of cognitive 
topology. Cognitive topology relates linguistic concepts—such as 
simple prepositions like over, under, in, and through—to spatial 
concepts in topology. For instance, Lakoff gives the example of 
people watching a game of ping-pong. The ball is described as going 
over, under, or into the net, and people are able to make these 
descriptions despite that there are literally an infinite number of 
trajectories that the ball can take. (In ping-pong, of course, the ball 
rarely goes under the net; but it is possible; volleyball might have 
been a better choice.)

The explanation that Lakoff gives is that people use topological 
descriptions of space in forming these concepts. These concepts 
include BOUNDED, REGION, PATH, OBSTACLE, etc. Lakoff 
claims that, since much of our experience of the visual world is 
universal, these are universal concepts in human language. He notes 
that "in" and "out" use the concept of a BOUNDED REGION, that 
"across" uses the concept of PATH, etc. This spatial reasoning 
underlies much of language and explains much metaphor, according 
to Lakoff. For instance, he gives the example of a couple whose 
relationship has "hit a dead-end street". This is a pervasive spatial 
metaphor which, Lakoff claims, is used with all sorts of actions. In 
this metaphor, according to Lakoff, "TRAVELLERS correspond to 
LOVERS, THE VEHICLE corresponds to THE LOVE 
RELATIONSHIP, ... THE PATH corresponds to THE COURSE OF 
THE RELATIONSHIP, etc.". Because of the pervasiveness of this 
metaphor, Lakoff sees cognitive topology as central to a theory of 
language.

Preliminary work has been done in linking cognitive topology 
to visual data using a connectionist paradigm (Regier 1988) (see the
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next section). The hope is that a natural bridge can be built between 
cognitive topological concepts such as prepositions, and images, as 
each is represented in a neural network.

Lakoff presents a series of convergences between the ideas of 
cognitive linguistics and connectionism. The basic analogy is that a 
pattern of weights in a neural network corresponds to a linguistic 
pattern, which is a meaningful symbol because of its causal relation 
to stimuli. Both cognitive linguistics and connectionism view 
semantics and phonetics as "autonomous", because they are based, 
respectively, in the sensory and motor systems; syntax and 
morphology are patterns of connections between semantics and 
phonetics. This is in sharp contrast to generative grammar, which 
relies on recursive rules and manipulation of symbols. It also denies 
Chomsky's (1980) concept of "autonomous syntax", whereby syntax 
is viewed as the product of a module in the brain employing a 
generative grammar, and cut off from semantics and phonology. 
Lakoff also, in a quite general manner, draws analogies between the 
two theories in regards to how patterns of activation are combined, 
how patterns vary and inherit properties, how they express partial 
activation of a concept, how concepts are defined, how metaphor is 
expressed, etc. He then goes on to outline how the basic concepts of 
cognitive linguistics could be defined in connectionist terms.

6.7. Recognizing Image-schemas
Regier (1988) attacks the problem of recognizing image- 

schemas, which are cognitive models of an image-based situation; 
that is, topological descriptions of the spatial relationships in an 
image. Image schemas are not static, but may contain descriptions of 
motion. His system handles images containing objects, represented 
by a binary array of pixels. His system uses Ullman's (1984) concept 
of "visual routines", which consist of simple procedures for 
performing simple visual tasks, such as detecting enclosed spaces, 
completing a boundary, etc., as well as rules for combining 
primitives to form more complex ones.

His system consists of an image net, two object nets, a closed 
object net, and three working image nets. The user manually selects 
two objects out of the image stored in the image net, and these are 
placed in the two object nets. The object in the first object net, 
called A, is in some relation to the second object—B, e.g. "in",
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"into", "outside", "out-of", and "over"—these are the five 
prepositions that his system was designed to handle.

After object B is copied to its object net, it is copied to the 
closed object net. There it is closed by detecting its endpoints and 
connecting them, using a connectionist version of standard 
algorithms for doing this (Rosenfeld & Kak 1976). He then copies 
object A into the working image nets, and performs what he calls 
"bounded spreading activation" on it. That is, when he is testing 
whether object A is in B, activation spreads out from object A, but is 
not allowed across the boundary of B (now closed). If activation 
ever reaches the edge of the net, then A is not in B, otherwise it is (B 
has contained the spreading activation). When he is testing whether 
A is over B, activation "rains down" from A to cells in the net below 
it. If there is activation on both sides of B on the bottom of the 
working net, then A is over B, in the sense of being above B and 
having either moved over or extended across B. (The sense of over 
as "above" alone is handled more simply.) He handles the concepts of 
"into" and "out o f  as transitions from being in the state of being 
outside to the state of being inside, and vice versa, respectively The 
three working nets are needed for the spreading of activation in 
multiple time frames. He performs two types of "focusing" in these 
working nets; (1) path-focusing, in which the entire path of an object 
is stored in one of the working nets and (2) end-point focusing, in 
which the object is shown at an endpoint of its path.

The system Regier has implemented has more of the flavor of 
a procedural array processor rather than a connectionist system. It 
would be interesting to see it implemented into a more strictly 
connectionist implementation that does not depend on outside control 
(which Regier implements as a sequencer network, after Jordan 
1986b, that controls the activation function of the other networks!) 
This is rather unorthodox connectionist work.



7
Language Understanding

7.1. Introduction
Natural language is one of the most challenging areas for 

connectionists, since it contains a good deal of recursive structure 
that is readily handled by recursive symbol-manipulating languages 
such as LISP and PROLOG. How to handle language in a 
connectionist network is not as apparent.

As in the case of speech understanding, the words of a sentence 
can be input to a neural network in two ways; one word at a time in 
serial succession to the same set of input units, or each word to its 
own whereupon all the words are processed in parallel. Both of these 
approaches have been taken in the various pieces of research 
discussed in this chapter.

The first work we discuss, that of Servan-Schreiber and his 
co-workers (1988), investigated the processing of linguistic data 
serially in a recurrent network. Their linguistic data was generated 
by a finite-state grammar. Finite-state grammars are among the 
simplest known, but they have the property, which is also 
characteristic of natural language, that which symbol appears at any 
point of a valid string of symbols is a function of the symbols that 
preceded it. Thus any system that can distinguish between strings that 
are in the language specified by the finite state grammar, and those 
that are not, must have some memory of the previous symbols 
encountered. In this system, this is handled by the recurrent network 
of Elman (1988). This work illustrates the usefulness of recurrent 
networks for serial processing* but for realistic natural language 
processing, finite-state grammars are insufficient. Below we discuss
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systems that parse context-free grammars based on production rules. 
These systems are more relevant for natural language processing.

Before doing this, though, we discuss systems that attempt 
sentence understanding. Some of the first work done on sentence 
interpretation with connectionist systems was done by Waltz and 
Pollack (1985). Their system, like several of the others discussed in 
this chapter, is not completely connectionist, because they used a 
conventional chart parser (Kay 1973) to create the parse trees that 
were used as input to their system.

The purpose of their system is to resolve lexical ambiguity. 
They do this by creating a network in which there is one (local) node 
for each interpretation of each word, and all compatible 
interpretations of different words reinforce one another; all 
incompatible interpretations inhibit one another, each parse tree of a 
given sentence reinforces the particular semantic node that is 
compatible with their interpretation of the syntactic category that a 
word belongs to, in the case of words that have multiple syntactic 
categories, depending on their use Relaxation brings the semantic 
network into a state reflecting a consistent sentence interpretation.

Like Waltz and Pollack, Cottrell and Small also developed a 
model of sentence interpretation and word-sense disambiguation. 
Instead of having an intensional semantics based on reinforcing and 
inhibiting connections, Cottrell and Small use a representation for 
each verb in terms of a case frame, which plays an important role in 
determining the interpretation of words and sentences via 
connections between word sense nodes and case role nodes. A case 
frame is a data structure that is associated with a verb that has slots 
for all the noun phrases involved in the action. Again, compatible 
nodes reinforce one another, and incompatible nodes inhibit one 
another, and again, relaxation creates a consistent sentence 
interpretation.

We also consider another system that does case semantics, that 
of McClelland and Kawamoto (1986b). The systems of Cottrell, and 
of Waltz and Pollack, do lexical semantics; that is, they resolve 
ambiguities in the interpretation of words in a sentence. McClelland 
and Kawamoto's system fills in all the slots of the case frame of a 
verb: for instance, for the verb "to rent", these might be the lessor, 
the lessee, the thing rented, the period of time, and the amount of 
money charged.

They use a microfeature representation of words. Their input 
is a sentence, and their output is a series of case fillers, in a
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particular order. They use rather complex distributed 
representations of these. The network is trained using sentence/case 
filler pairs using a simple two-layer perceptron with no hidden units 
and the perceptron convergence procedure. The system was able to 
learn the training set and to generalize on it; it even formed defaults 
for missing case fillers. Because of their emphasis on compositional 
semantics, McClelland and Kawamoto's work is closely related to the 
work on knowledge representation along these lines that was 
discussed in Chapter 4.

We consider five approaches to parsing with networks, those 
of Hanson and Kegl (1987), Li and Chun (1987), Chamiak and 
Santos (1987), Selman and Hirst (1987), and Fanty (1985).In all of 
these except Hanson and Kegl's work, the system creates in the 
network structures that contain or resemble parse trees.

Hanson and Kegl's work on PARSNIP is similar to Sejnowski 
and Rosenberg's NETtalk (see section 5.7), except that it is applied to 
parsing sentences instead of turning them into speech. Like NETtalk, 
PARSNIP uses a three-layer feed-forward network composed of 
input, hidden, and output layers. Unlike NETtalk, and like Cottrell 
and co-workers' image compression system (see section 2.31), 
PARSNIP is auto-associative. The "parse" is built up in the hidden 
units. There are fewer hidden units than there are input units, so the 
hidden units act as a bottleneck that must compress the information 
inherent in the structure of the input sentence. They succeeded in 
training their network in auto-associative manner. Their network 
was able to perform a sentence completion task in which a word 
category left out of the input was inserted in the output by the 
system. They did not completely analyze the behavior of the hidden 
units, but they found that there were certain units that learned to 
respond to constituents such as noun phrases or verb phrases.

Both Chamiak and Santos, and Li and Chun, developed 
approaches to parsing that were not strictly connectionist, but 
remained roughly so in flavor. Both systems have connections 
between nodes in a network, but allow the execution of local 
programs associated with each node to enforce rules or constraints. 
Chamiak and Santos represent a parse tree in a set of nodes arranged 
in a table, and allow connections between nodes which contain 
symbols for the various constituents of a sentence. Rules in each node 
control the kinds of connections each can make with neighboring 
nodes.



198 Language Understanding

In Li and Chun's system, there is a network which embodies 
the entire context-free grammar that the system is set up to 
understand. There is a node for the left side of each grammar rule, 
which is connected to nodes for each constituent on the right side of 
the rule, below it. The system operates by passing markers, which 
represent sentence constituents, upwards, and constructing parse 
trees with programs associated with each node which access global 
data structures. At the bottom level nodes for terminal symbols all 
receive any input appropriate to them; nodes above them need to 
receive all necessary markers to make up a rule, in the proper order. 
Part of each marker is the location of that constituent in terms of 
which words in the sentence it encompasses; higher-level constituents 
must be made up of markers (constituents) that are adjacent in the 
sentence. By passing this location information, Li and Chun avoid the 
approach taken by Fanty, which is to have a large number of units to 
represent each possible rule in every sentence position. 
Unfortunately, Li and Chun are forced to augment connectionism 
with symbol passing and complex operations in each node, in order 
to accomplish this.

Fanty (1985), like Li and Chun, and Chamiak and Santos, 
developed a connectionist system to parse context-free grammars. 
His is a multilayer system in which there is a node for every rule, at 
every sentence position, connected to every set of symbols which 
could compose the right-hand side of the rule. This leads to a very 
large number of units. Like many other connectionist parsing 
systems, Fanty's system is hierarchical; rules containing more 
complex constituents are higher up in the network. His system parses 
in two "waves", a bottom-up one and a top-down one. Activation is 
sent up the network to the start symbol at the top, and this symbol 
then sends another wave of activation down. At the end, the only 
fully activated units in the network comprise a parse tree for the 
sentence; all partially activated sub-trees that did not receive top- 
down activation are not included.

We conclude the chapter with a discussion of two models of 
human processing of language that attempt to account for 
psychological data.. The first is Rueckl's (1986) model of letter and 
word identification in reading; the second is Rumelhart and 
McClelland's (1986a) model of learning the past tense by children. 
We review an elaborate critique of this latter model by Pinker and 
Prince (1988).
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Rueckl's work was partly motivated by a desire to explain the 
word repetition effect, which is that subjects recognize words that 
they have recently seen better than those they have not. In order to 
explain this phenomenon and related phenomena in reading, Rueckl 
developed a three-level model. The first level extracts features from 
the visual field; the second level expresses these features in object- 
centered coordinates, and the third level performs object 
identification. In order to account for people's ability to give the 
same representation to visually disjoint objects, such as "a" and "A", 
he adds a fourth module, which stores these correspondences, and 
passes them to the object identification module. The word repetition 
effect is accounted for by the hypothesis that the system comes to 
recognize an object by relaxation; if an object has recently been 
activated, relaxation proceeds faster, since the network is closer to its 
representation in weight space than it would otherwise have been.

Rumelhart and McClelland's model of the development of the 
formation of the past tense in English parallels the behavior of 
children. The model proceeds, over the course of learning, from no 
knowledge of how to form the past tense to the ability to form it 
using ”-ed". This rule (in both their system and in children) is over
generalized, forming non-words such as "taked". Both children and 
the system learn to correct this over-generalization, and even learn 
rules applying only to the formation of the past tense in specific 
classes of irregular verbs (for example, take becomes took, shake 
becomes shook, etc.)

Both the input and output of their system use distributed 
representations of the phonological features of the words in question. 
Each word is represented by a sequence of wickelphones, which are 
phoneme symbols surrounded by the symbols of the phonemes 
immediately to their left and right. These wickelphones are 
represented as patterns of activation across a set of units called 
wickelfeatures. The system consists of a layer of wickelfeatures for 
the input word completely connected to a layer of wickelfeatures for 
the output. Because the system has no hidden units, like McClelland 
and Kawamoto's model of the comprehension of verbs, it was trained 
using the perceptron convergence rule. It learned the past tense 
formation task in the manner described above. The rules it learned 
were implicit in the connections and weights. The distributed 
representations made feature detectors in the form of hidden units 
unnecessary, since the wickelfeatures already represented various 
conjunctions of wickelphones.
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Pinker and Prince (1988) developed an elaborate critique of 
Rumelhart and McClelland's model. They criticize the wickelfeature 
representation as being inadequate to all the possible phonetic 
transformations that are found in human languages.

Pinker and Prince's main point is that many linguistic and 
morphological transformations, such the addition of an "s" at the end 
of a word, are used in many contexts in English and other languages. 
An associationist approach to the creation of these inflections does 
not allow an independent rule system to be generalized across a 
series of different contexts. Yet the fact that the rule is applied 
uniformly across a variety of contexts leads one to believe that each 
inflection does not have its own representation of the rule. Of 
course, much of this criticism is due to the limited nature of 
Rumelhart and McClelland's model. It must be kept in mind that a 
larger scale linguistic model, that would handle parsing, semantics, 
and morphology in parallel, would not treat each inflection 
independently, but would integrate linguistic information from 
various domains. Thus, for instance, some units might be devoted to 
the "s" inflection, but would perform this inflection in a variety of 
contexts, depending on information received from other subsystems, 
including one that does parsing.

7.2. Processing Finite State Grammars Sequentially
Servan-Schreiber and 

his co-workers (1988) discuss 
an algorithm for dealing with 
sequential data such as that 
given in natural language.
They investigate a proposal 
by Elman (1988) whereby a 
connectionist system can 
"remember" earlier stimuli 
given to it. He starts with the

Figure 7.1 Architecture of the system of 
Servan-Schreiber et al. (1988) Reprinted by 
permission.

usual three layer system of input, hidden, and output units, and adds 
a fourth set of units, the context units (see Figure 7.1). At each time 
slice the contents of the hidden units are copied into the context units, 
and they in turn feed back into the hidden units during the next time 
slice (that is, when the next input is given).



Neural Networks in Artificial Intelligence 201

s

Figure 7.2 The finite-state machine of Reber (1967). From Servan-Screiber et al. 
(1988). Reprinted by permission.

Servan-Schreiber and his co-workers apply this model to 
learning the grammar specified by the finite-state machine devised 
by Reber (1967) for his language learning experiments (see Figure 
7.2). There were five symbols in the alphabet of the language 
specified by this machine. There were seven input units 
corresponding to the five symbols, and a start and finish symbol. 
The output units were used to predict the next element in a (legal) 
sequence representing the language. Thus there were seven output 
units. There were also three hidden units and three context units, 
which functioned as described above. The network was trained using 
back-propagation, with 200,000 strings of varying length as stimuli.

Since there are two alternatives at each juncture in the finite- 
state machine, except at the final symbol, the best performance that 
could be achieved would activate each of the two output nodes 
corresponding to these two symbols equally when the system reached 
that juncture in its input, and no other nodes at all.

Servan-Schreiber and his co-workers' network does this, 
roughly, although there is some stray activation seeping to the other 
nodes, and the ratio of the activation of the two nodes varied 
somewhat from one. A string was considered "rejected" if no output 
node was more than 30% activated after presentation of any of the 
symbols in the string. The system was presented with 20,000
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randomly generated strings that were in the grammar, and it 
accepted all 20,000 of them. It was also presented with 130,000 
randomly generated strings of the five symbols, of which 0.2% were 
in the language. All of them were rejected except for this 0.2%.

Servan-Schreiber and his co-workers analyzed the internal 
representations that the network used, starting from the assumption 
that these patterns must encode the position of the current input in 
the total string. In fact, analysis of the activation patterns showed 
that the system grouped together—that is, had similar patterns of 
hidden unit activation—for all those string prefixes that arrived at 
the same position in the finite-state machine. (String prefixes are 
beginnings of strings.) There were five such clusters in the patterns 
of activation, corresponding to the five nodes in the automation other 
than the start node. Within each cluster, the patterns were further 
divided into those whose corresponding input string had a similar 
"history" with respect to which nodes in the finite state machine had 
been previously visited.

They note that the network is readily interpretable because of 
the fact that there are only three hidden units. More hidden units 
would have resulted in more redundancy and more distribution of 
information. If insufficient hidden units are provided, then the 
network may not achieve adequate performance—inadequate 
performance occurs even with three units under some initial 
configurations of weights and timing sequences.

The machine described above basically functions in the same 
fashion as the "memory-less" finite-state automaton—it represents 
mainly information about the current node, and information about 
the path to that node that is needed in order for the system to 
function correctly.

In their second training experiment, Servan-Schreiber and his 
co-workers trained the network on the set of grammatical strings 
with lengths less than or equal to eight. There are 43 such strings 
generated by Reber's automaton. They used 21 of these strings to 
train the network, and the remaining 22 to test its performance. 
They presented the 21 training strings repeatedly until no 
improvement in performance was noted; this took 2,000 training 
cycles. After training, the network was tested on the remaining 22 
strings, which contained a total of 165 symbols. It incorrectly 
predicted the successor of ten of these symbols. There were also ten 
cases where the symbol had two legal successors, and the system 
predicted only one of them.
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The representation learned in the hidden units differs 
somewhat from the first training set, because now the system 
"knows" that the strings must be of a limited length. Thus, for 
instance, if the network sees an X in position 7 of a string, it knows 
that an S must follow (this should be clear if you look at the 
automaton).

The cluster analysis of the hidden unit patterns produced in 
this second experiment revealed that the network clustered together 
partial sequences that led to the same prediction, partial sequences 
that ended in the same letter, and partial sequences that ended in the 
same node by taking similar paths. Thus path information, as well as 
node information, is incorporated in the representation, which was 
not the case in their first training experiment. This results directly 
from the fact that string length information is useful for the network 
to perform well in this task, and the best way to do this is to encode 
information on the path taken, which amounts to much the same 
thing.

Servan-Schreiber and his co-workers analyzed the learning 
process for a slightly simpler machine, and discovered that it divides, 
roughly, into phases. In the first phase, little learning has occurred, 
but the network produces different responses to different symbol 
inputs. In the second phase, the individual letters presented are 
grouped by what prediction (output) they make. Here the network is 
ignoring the context units. Then the network learns to pay attention 
to the context, which basically encodes what letter preceded the one 
that is currently being presented. At this point, it is learning 
associations between pairs of letters—the input letter and the one that 
preceded it—and the desired successor. In the final stage of 
learning, it learns to "remember" farther into the past, beyond the 
immediate predecessor, to find clues about what should follow. It is 
able, in the case of the first learning experiment, to use this 
information about the past to effectively determine the node in the 
finite-state machine at which it finds itself at any given point in its 
input stream.

The network has more difficulty "remembering" the further 
back in the input that the relevant information is. For instance, 
Servan-Schreiber and his co-workers consider the two sequences 
"PSSS" and "TSSS", which require the successors "P" and "T" 
respectively. When of the final "S" in each sequence is presented, the 
two networks (one processing each string) would have to have 
different internal representations (in the hidden units). The only
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way this could occur is if a discrepancy is retained from the initial 
letter, since all the S's are the same in both cases and could not have 
caused the difference. They observed that the amount of time needed 
to train the network was an exponential function of how far, in terms 
of the number of symbols, into the past it was being trained to 
remember.

Language processing requires the listener to remember 
constituents across arbitrarily long sentences of words. One example 
of this is in embedded clauses. For instance, in the sentence "the man 
who ran for governor sang a song", the listener must remember, 
when he or she hears the word "sang", that the subject of this 
sentence is "the man" despite the fact that there is an intervening 
clause. This problem is a generalization of the problem of a 
repeating letter discussed above. They studied it by using a more 
elaborate finite machine in which the strings in the language 
generated by the original (Reber's) machine was surrounded by 
either P’s or T’s (see Figure 7.3).

S  0 .3

Figure 7.3. An elaboration on Reber’s original automaton. From Servan-Schreiber 
et al. (1988); reprinted by permission.



Neural Networks in Artificial Intelligence 205

If the transition probabilities are all equal to 0.5 in this 
machine (since there are two choices at each junction), when the 
training set of strings is generated, the network is unable to correctly 
predict a final T from an initial T or a final P from an initial P. 
Only if the strings surrounded by P's have a different statistical 
sample size from those surrounded by T's in the training set is the 
system able to learn to complete a string correctly. In other words, 
the initial symbol must be somehow encoded in the embedded 
sequence in the training set, which is what the network is quite poor 
at doing.

Thus this particular implementation of the embedding problem 
as a network was not very successful. The authors take an optimistic 
view of this, noting that small statistical differences in the training 
set are sufficient to create differences in performance on the 
completion task. They note that these simple recurrent networks are 
limited to "paying attention" to what immediately preceded a given 
symbol in the input; thus they are not applicable to context-free and 
more complex grammars in which totally independent sequences may 
be embedded in a certain string. Nevertheless, they have modeled an 
important aspect of language processing, to a limited extent: the 
speaker's expectations at any given point of the flow of speech.

7.3. Sentence Interpretation
Waltz and Pollack (1985) combine knowledge from a variety 

of sources in their connectionist model of sentence interpretation. 
Their approach is reminiscent of the HEARSAY II speech 
recognition system (Fennel & Lesser 1977).

They use a chart parser (Kay 1973) to create a parse 
represented as a network which contains several parse trees 
corresponding to syntactically valid readings of the sentences. Two 
non-terminals in the grammar that, at the same level in the network, 
ultimately contain the same words as constituents, inhibit one 
another; all child-parent connections are excitatory. Thus relaxation 
will result in a single unambiguous interpretation of a given 
sentence.

Waltz and Pollack view the resolution of lexical ambiguity as 
concurrent with parsing. When a word is activated, their system 
activates a network that represents all of its meanings; a set of nodes 
representing the word's alternate senses and lexical categories. All 
of the meanings inhibit one another, each meaning excites the lexical
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category the word is a member of, given that meaning, and inhibits 
all the rest of the lexical categories in the network. Finally, all the 
lexical categories inhibit one another. For instance, the word "shot" 
has four meanings, and so there are nodes corresponding to "tired", 
"bullet", "fired", and "wasted". "Tired" is an adjective; "fired" and 
"wasted" are verbs (in these meanings), and "bullet" is a noun (as in 
"buckshot"). There are nodes corresponding to "noun", "verb", and 
"adjectivethe "tired" node excites the "adjective" node and inhibits 
the "verb" and "noun" (the same connections are made in the reverse 
direction), etc.

Figure 7.4. A network from Waltz and Pollack (1985) for interpreting the sentence 
"John shot some bucks" in the two contexts of hunting and gambling. Reprinted by 
permission.

A network for the sentence "John shot some bucks" is shown 
in Figure 7.4. This network is shown in the context of the node 
representing hunting being activated, as opposed to the node 
representing gambling being activated, that is, the sentence is taken 
to mean "John fired at some male deer" rather than "John wasted 
some money". When the node for the hunting context and the active 
syntactic categories are clamped at high activation, the network
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relaxes to a state which reflects the correct interpretation of the 
words "shot" and "bucks" in hunting. Nodes representing lexical 
categories that are the same in the lexical and syntactic portions of 
the tree activate one another as one can see by looking at the figure.

Figure 7.5. Network for disambiguating "The astronomer married a star." At this 
point, early in the relaxation, the incorrect interpretation ("star" as celestial body) is 
winning (dark nodes), but it soon will be defeated by the correct one ("star" as 
celebrity). From Waltz and Pollack (1985); reprinted by Permission

Waltz and Pollack's system exhibits the same sorts of "double- 
takes" as people do with sentences such as "the astronomer married a 
star". Many people upon hearing this sentence, briefly think that the 
astronomer married a celestial body, but then realized that s/he 
married a movie star, since one can't marry a celestial body (bad 
puns aside). This is modeled by their network’s performance in 
Figure 7.5. Initially, the meaning of "celestial body" for "star" is 
highly activated by both the word "star" and the node for 
"astronomy" which has been activated by "astronomer". The node
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for "movie star" is not highly activated, since activation has not yet 
propagated through the node for "marry" to the "spouse 2" node and 
then to "movie star" as a plausible candidate for spouse 2. 
Eventually "movie star" wins out, as activation from "marry" beats 
activation from "astronomy". Of course this is dependent on the 
assignment of weights: This raises the question of whether weights 
alone are sufficient to convey the information that spouse 2 is 
necessary to the marriage.

In Waltz and Pollack's system, context and semantics play a 
major role in disambiguating syntactically and semantically 
ambiguous sentences. "An astronomer married a star" is an 
example of semantic ambiguity that their system handles well; their 
system can also handle sentences like "John ate up the street", in 
which one interpretation is wildly implausible, by using the semantic 
network to render implausible the interpretation that what was eaten 
is the street. Thus die syntactic and semantic/lexical parts of the 
network, although each is localized, have connections which allow 
them to work together at arriving at a plausible interpretation of a 
sentence.

Waltz and Pollack advocate a knowledge representation 
scheme in which the system's knowledge would be encoded in up to 
hundreds of thousands of nodes, and there would be a large set of 
microfeatures, on the order of a thousand. Each concept should be 
associated with a set of microfeatures, which would be a subset of the 
total set of microfeatures. These microfeatures, according to Waltz 
and Pollack, should represent concepts that are broadly used by 
people in dealing with a wide variety of situations. Their 
microfeatures are not based on logical decomposition, but simply on 
commonness and ecological usefulness. Waltz and Pollack note that 
any hierarchies and sets that exist emerge as a result of concepts that 
utilize the same subset of microfeatures. Since microfeatures are 
shared by many concepts, they can serve as a context.

For instance, in the earlier example of "John shot some 
bucks", they posit that the node for "hunt" might be connected to a 
node for the microfeature "outdoors". If the sentence "John shot 
some bucks" was preceded by "John and Mary drove to the cabin" 
and the node for "cabin" was connected to the "outdoors" node as 
well, then the "outdoors" node would be activated prior to the system 
seeing "John shot some bucks", and then the "hunting" node would 
be activated preferentially to the "gambling" node. If a number of 
other microfeatures also reinforced the "hunting" node (and possibly
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inhibited the "gambling" node), then the bias would be even stronger 
for the system to settle on the interpretation in the context of 
hunting.

The microfeatures would make it possible to quickly converge 
on the correct interpretation without necessitating a connection 
between every pair of nodes in the system, since two concepts can be 
connected indirectly, via one or more microfeatures. Waltz and 
Pollack note that the microfeatures should be chosen in such a 
fashion so as to discriminate any concept from all others. 
Connections would be strongly positive between a concept and 
microfeature (weight = 1), weakly positive (0.5), neutral (0.0), or 
weakly negative (-0.5). It would be rare that a concept and a 
microfeature to not be associated with one another. The set of 
microfeatures that two concepts share can be viewed as encoding a 
relation between them, so the association is not simple, as it would be 
in an ordinary (unlabeled) semantic network.

Waltz and Pollack note that since the world tends to have 
clusters of microfeatures that co-occur, the patterns of microfeatures 
would not be uniformly and randomly distributed, but would tend to 
cluster. They do not propose an adequate solution to the type/token 
problem; if there is only one set of microfeature nodes, then only 
one (or slightly more than one) concept can be active at a given time. 
One would think that the microfeature nodes would have to be 
duplicated in some way to handle complex thought patterns involving 
the simultaneous activation of several concepts.

Waltz and Pollack discuss how the weights and connections 
might come into being, and how they might be dynamically 
generated. It would be interesting to see how any of the various 
connectionist learning algorithms might be used to generate a 
network like that used by Waltz and Pollack.

Bookman (1988) developed a model, MICON (Microfeature 
Contexts which extends Waltz and Pollack's work. Like Waltz and 
Pollack's model, MICON consists of nodes for word meanings, 
words, syntactic categories, and semantic microfeatures. He also 
adds a layer of timing nodes which delay the processing of the next 
word until the current word has been fully processed. His system 
performs word node relaxation followed by microfeature relaxation 
in a cycle, and thus establishes a shifting context in which new 
sentences can be interpreted.
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7.4. Word Sense Disambiguation
Cottrell and Small 

(1983) approached the 
problem of disambiguating 
the meaning of a word with a 
connectionist model. Their 
model consists of four levels 
(see Figure 7.6); the lexical 
level, the word sense level, 
the case level, and the syntax
level. At the lexical level, 
there is a unit for each word Figure 7.6. Architecture of the model of 
in the system. Each word has Cottrell and Small (1983). Reprinted by 
one or more nodes at the permission.
word sense level, corresponding to each of the meanings of the 
word, as in Waltz and Pollack's model. Each word on the lexical 
level is connected to each of its meanings on the word sense level. 
Each of the senses of a word, embodied in a node, inhibits all the 
other senses of that word.

Case theory, as advocated by Fillmore (1968), holds that the 
roles played by the various constituents in a sentence are critical to 
its comprehension. Word order gives cues to the roles played by the 
different noun phrases, as does the form of the verb. For instance, 
in the sentence "The boy ate the banana", we know from word order 
that the boy is the agent of the action of eating and the banana is the 
patient (thing eaten). If the form of the verb changes, as in "the boy 
was eaten by the lion", now word order gives us opposite 
information: the boy is the patient, the lion the agent. Prepositions 
like "by" also give clues to the role played, as do the semantic 
properties of a noun. For instance, only nouns with the property 
"animal" can (in non-idiomatic uses) be the agent of the verb "to 
eat".

Cottrell and Small's system's case level contains nodes 
representing cases; the authors use what they call an "exploded case 
representation" in which there are hundreds of semantic case roles 
rather than the dozen or so that are commonly mentioned (agent, 
instrument, etc.). The syntax level acts to enable or disable 
connections between various case rules; for instance, a particular 
word might take on a particular one of its senses, and a particular
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case role, if it is in a particular syntactic position (e.g., subject 
noun).

Cottrell and Small use the complex "and-of-or" units 
introduced by Feldman and Ballard (1982) (see section 2.2). Such a 
unit has multiple input sites, each of which has one or more inputs. 
Each site computes an "or" of all the inputs impinging on that site, 
or, in the case in which the inputs are real-valued, the maximum of 
the inputs (which is an extension of the "or" function to the real
valued case). The results computed at all the sites are then added 
together.

Cottrell and Small define cases as binary relations between 
predicates and arguments, for instance: Agent(run)=John, in the 
sentence "John ran home". They explode the case representations by 
encoding a single node for each predicate-role combination; thus 
there is a "buy-agent" node which denotes agents of the act of 
buying. The buy-agent node would be connected to all the nodes at 
the word sense level that are capable of being the agent of an act of 
buying. This specificity allows the system to embody a good deal of 
knowledge about which words can play which roles in a given action.

Figure 7.7. Subset of the network needed to distinguish "John threw up dinner" 
from "John threw up a ball." From Cottell and Small (1983); reprinted by 
permission.

Cottrell and Small give an example of a network that 
successfully disambiguates the various meanings of "threw", as in 
"Bob threw a ball for charity" (GAVE), "Bob threw the fight"
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(THREW1), "Bob threw a ball to the dog" (PROPEL), and "Bob 
threw up dinner" (VOMIT). The four meanings are represented by 
4 nodes denoted by GAVE, THREW1, PROPEL, and VOMIT. 
There are three case nodes denoting the agent, object, and location of 
the PROPEL action—PAGT, POBJ, and PLOC; and two nodes 
denoting the agent and object of the VOMITing—VAGT and VOBJ 
(why Cottrell and Small chose this particular unappetizing verb to 
disambiguate is beyond me!)

The subset of the entire network needed to distinguish "John 
threw up dinner" from "John threw up a ball" is shown in Figure
7.7. In the case of the former sentence (referring to the figure), we 
see that "dinner" has primed "food", which in its turn has primed 
"VOBJ", which primes "vomit". "Bob" primes "Bobl" (its sense 
node), which in its turn primes both "PAGT" and "VAGT". Thus 
the word "Bob" alone does not help in the disambiguation. 
Originally, when the system starts processing, the meanings 
PROBEL and VOMIT both get activated, but the inhibition between 
them insures that one of them will win out. In the case of the former 
sentence, it is "vomit", since it is receiving more activation (from the 
"up", "threw", "VAGT" and "VOBJ") than is propel (which is 
getting activation from "PAGT", "threw", and "PLOC"). The 
critical word "dinner" makes the difference, via "VOBJ". If it is 
replaced by "ball", then VOBJ becomes deactivated and POBJ 
becomes activated, and thus the "propel" meaning of "threw" wins 
out.

The connections between nodes can reflect the statistical 
frequencies of correlation between them. This way, if a word is 
heard, the system will assume the most common meaning of it.

Without large amounts of lateral inhibition, activation will 
"bleed" through Cottrell and Small's network. A theory is heeded 
which tells where inhibiting links must be placed in order to lead to 
stable coalitions of nodes that represent a consistent sentence 
interpretation.

7.5. Making Case Role Assignments
McClelland and Kawamoto (1986b), like Cottrell and Small, 

developed a connectionist system for making case role assignments. 
Case role assignments are also sometimes ambiguous, as in "the boy 
saw the girl with the binoculars". Here, depending on the context, 
either the boy or the girl have the binoculars. McClelland and
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Kawamoto's goal was to develop a model which simultaneously 
accounts for the multiple constraints on role assignment. This model 
was to select the proper verb case frame, to account for the effects of 
context, to select default values for missing constituents, and to 
generalize, guessing properties of a previously unseen word based on 
the role it is playing in a sentence.

The model has two sets of units—one representing the 
constituent structure of the sentence and the other representing the 
role assignments of the sentence. The model learns by being 
presented with associations between activation patterns in the two sets 
of units, using the perceptron convergence procedure.

Each word is represented by a set of semantic microfeatures. 
They chose those microfeatures based on important divisions in 
human perception, such as "soft/hard", "male/female/neuter". Verbs 
have microfeatures such as "touch/no touch" which tells whether the 
agent touches the patient during the course of the action, or "cause, 
no-cause, no-change" corresponding, respectively, to conditions in 
which the verb causes something to happen, or in which there is no 
cause specified, or in which the verb doesn't cause any change at all. 
There are eight dimensions describing nouns and seven describing 
verbs. Each microfeature is specified by the minimum number of 
bits needed to specify all of its values. Each noun and verb is 
therefore represented by a bit vector which is a concatenation of the 
bit values on each microfeature. If a word is ambiguous, then it is 
represented by the average of its possible patterns.

The "bits" are real-valued; a word that had a 1 on one bit in 
one meaning and a 0 on it in the other meaning would have a value 
of 0.5 on that bit. The model uses top-down constraints to resolve 
such ambiguities, forcing the bit value to either 0 or 1.

Both verbs and nouns have more than one meaning. The 
model separates the different uses of a verb into different bit vectors; 
for instance, the use of "broke" when no instrument is specified 
indicates that the agent manually broke the patient whereas a use such 
as "the hammer broke the glass" specifies no agent, and there is 
contact between the instrument and the patient. The microfeature 
pattern for "touch" has a different bit for each role that could touch 
the patient. This representation is subject to criticism from the point 
of view of Fodor and Pylyshyn (see section 1.9), who argue that 
connectionist models that do not have the ability to manipulate 
combinatorically combined symbolic expressions face the necessity 
of using a different node to represent each combination, as
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McClelland and Kawamoto do, using separate nodes for each pair 
agent/touch, instrument/touch, both-instrument-and-agent/touch, etc. 
Of course, in their system the number of roles is rather low, so the 
number of combinations is low.

The simple sentence input they use is preprocessed with the use 
of a standard, non-connectionist parser into its four constituents; the 
verb, subject, noun phrase (NP), object NP. These constituents are 
each represented redundantly by an array of units called sentence 
structure (SS) units. There is an SS unit for every pair of 
microfeature bits; for instance for the nouns there is a unit 
corresponding to human=yes/ gender=male. If both of these bits are 
on, the conjoined unit is on (value 1) with a probability of 0.85; if 
only one is on, the conjoined unit is on with a probability of 0.5, and 
if both are off, the conjoined unit is on with a probability of 0.15. 
The units are thus stochastic.

Cottrell and Small view case slot fillers as relations of the 
form (A R B), e.g., (Broke Agent Boy) denotes the fact that the 
agent of the verb "broke" is "boy". A localist representation would 
require that each combination of three features would have its own 
node. McClelland and Kawamoto use a distributed representation 
composed of the case structure units. There is an array of units 
corresponding to each of the agent, patient, instrument, and modifier 
in their simplified case structure. Each unit in each array represents 
the conjunction of a microfeature from the representation of the 
verb, that is the first operand in the relation, with a microfeature 
from the noun, that is the second operand. The main difference 
between the sentence structure and case structure units is: in the 
sentence structure units an entity's microfeatures are conjoined in a 
cross product with each other, whereas in the case structure units the 
microfeatures of one operand are conjoined with those of the other.

Each of the sentence structure units is connected to each of the 
case structure units via weighted connections. Each unit has a 
variable bias. The system, since it has no hidden units, was trained 
using the perceptron convergence procedure. The patterns in the 
two sets of units were set during the training by a conventional 
computer program. There are about 2500 units total in the case role 
representation, and approximately 100 of these should be activated 
by any given sentence. Their model, after 50 training cycles, turns 
on about 85 of these accurately, and 15 of them incorrectly.

McClelland and Kawamoto interpreted the model’s ability to 
generalize case role properties of different verbs. For instance, if
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the model leams that the role "patient" of the verb "to break" is 
always filled by a "fragile object", it should be biased toward 
assuming this when a novel sentence is presented. It should be able 
to use this to arrive at the correct interpretation of "the dog broke 
the plate" and "the window broke". In the former case, "dog" should 
be assigned to the role "agent", whereas in the latter case, "window" 
should be assigned the role "patient". This is exactly the behavior 
the model exhibits, after being trained on a number of examples in 
which a fragile object is the object of "broke". This behavior is due 
to the complete connectivity between the case structure and the 
sentence structure units, which allows the model to pick up the 
microfeatures of a particular slot filler no matter where it may be 
found in the sentence.

Conversely, the model is able to use word order information 
to make the correct role assignments for "the girl hit the boy" and 
"the boy hit the girl", although boy and girl, in their model, differ 
only on a single microfeature. This is because the model is able to 
form strong correlations between patterns in particular role 
constituents and patterns in particular sentence constituents.

The model exhibits the automatic generation of defaults. A 
default represents a weighted average of all the arguments that have 
been presented in training in the place taken by the missing 
argument. The model also is able to use case frame information and 
context to resolve lexical ambiguity, as in "the chicken ate the 
carrot", where chicken is correctly assigned the role of eater despite 
the fact that it normally plays the role of the thing eaten. This is 
because the carrot can play the role of the thing eaten, and the word 
order makes the chicken preferentially play the role of eater.

The model is also able to make "errors" that reflect context. 
In the case when a soft ball breaks something the model incorrectly 
labels the ball as hard, because normally hard objects are needed to 
break other objects.

7.6. The MPNP Parsing System
Li and Chun (1987) developed a connectionist system for 

parsing natural language. Their work is unorthodox from a 
connectionist point of view, since it uses both a connectionist 
network, and the passing of explicit symbolic markers. In their 
system, the nodes can themselves contain symbolic tokens. They
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refer to parsing their system as the MPNP (Massively Parallel 
Network-based Parsing) system.

They have three modules in their system, the dictionary 
interface, the MPNP network, and the inference network. The 
dictionary interface processes the input sentence, creating a sequence 
of markers indicating the syntactic category of each word. The 
MPNP network represents an entire context-free grammar. The 
bottom of the network has one node for each terminal symbol in the 
grammar. Grammatical rules are represented by connections to 
nodes lower down in the network.

For each non-terminal symbol, there are as many nodes in the 
MPNP network as there are instances of that symbol on the left-hand 
side (LHS) of a rewrite rule. The LHS symbol is connected to all the 
symbols, below it in the network, that are on the right-hand side 
(RHS) of the rule. Figure 7.8 shows a sample grammar and the 
MPNP network that is constructed from it. Note that recursive rules 
imply self-links in the network. The links are labeled A, B, C, ... 
according to their order on the RHS of the role, giving the ordering 
for use by a homunculus internal to the LHS node.

Each of the nodes in 
their system has its own local 
memory. In order for a node 
to become active, it must 
receive all of its inputs in the 
order given by the labels on 
the links. Only after this can 
a marker pass across the link.
The markers represent 
phrases; each of them 
contains the start position of 
the phrase in the input 
sentence, a value one greater Figure 7.8 A grammar and a network 
than the end position, and a representing it. From Li and Chun (1987); 
pointer to a data structure reprinted by permission, 
representing the syntactic or 
semantic structure of the phrase.

Each node in the network runs an independent version of a 
program called the housekeeper. The housekeeper makes sure that 
the markers that are passed into the node arrive in the proper order, 
and rejects any that arrive out of order. It also makes sure that the 
starting position is correct. When all the required markers of a given

(1) S ->S l
(2) S I - >  NP VP pari
(3) S i - >  VP a d
(4) VP - >  Vnt [mdr]
(5) VP - >  V ti  (idv) NP  
(0) VP — >  Vdo NP NP  
(7) V P - >  V P P P

(8) PP —>  pr* NP 
(0) N P —>  det N P i
(10) NP - >  NPi
(11) NP —>  NP PP  
(13) N P i —>  d o.
(IS) NPI - >  «4j NPI
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node are received in the proper order, a new marker is constructed 
out of them that has as its starting position that starting position of 
the first marker comprising the phrase, and as its ending position the 
ending position of the last. This new marker is then passed upward 
to all the nodes that the node in question is connected to (in that 
direction.) This results, ultimately, in a left-to-right parse of the 
input sentence, but it avoids the duplication of resources required by 
a more strictly connectionist implementation such as that of Fanty 
(see the next section), while retaining the same amount of 
parallelism.

Like Fanty's system, Li and Chun's system implements top- 
down expectations by using two levels of activation. They propagate 
this top-down expectation from the start symbol S, which is at the 
top of the network. As this expectation is propagated downwards, 
nodes below the S symbol are placed into a semi-activated state. 
Only semi-activated nodes can receive input from below; when they 
have received one of their required marker inputs, they can move 
into a fully activated state. If nodes do not receive any bottom-up 
input, they are deactivated. The system therefore starts with very 
broad expectation, which is gradually narrowed down over the 
course of parsing.

The system also contains, within each node, procedures which 
Li and Chun call demons. The function of these demons is to 
construct a parse tree out of the smaller trees passed up in the 
grammatical network with the markers that come from the phrase 
constituents below. Each marker, you may recall, contains a pointer 
to such a parse tree; the demon need only combine these trees left to 
right. It may also perform associated tasks, such as filling in 
semantic roles in a case frame, or perform semantic inferences by 
accessing a knowledge base.

The system is able to deal with recursive syntax rules naturally 
enough, via self-links. Nodes pass markers to themselves which then 
get included in larger markers.

Li and Chun used their system to parse both English and 
Chinese sentences. The system extends nicely to handle a problem 
found in understanding Chinese, that one or more characters may 
correspond to a word. A character occurring alone may denote one 
thing, whereas in combination with another character it may mean 
something different. It is difficult to ascertain which one is intended 
without the aid of syntactic or semantic information. In Li and 
Chun’s system, these character combination rules are naturally added
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at the lowest level of the MPNP system, and thus syntactic and word 
combination information are integrated naturally.

The main advantage of the MPNP system over conventional 
serial mechanisms of parsing that utilize backtracking are its 
parallelism and its mechanism of passing phrase markers to all the 
nodes that might need them. A promising line of research might be 
to figure out a way to implement the marker passing used in MPNP 
in a more strictly connectionist manner.

7.7. Parsing Strings from Context-Free Grammars
Fanty (1985) developed a connectionist model that parses 

sentences that are formed from arbitrary context-free grammars 
(CFGs). Given a CFG that contains no e-productions (rewrite rules 
that replace symbols with nothing), Fanty constructed a connectionist 
network that parses strings of some maximum length, and creates a 
parse tree that is implicit in the activations of nodes in the network. 
His model is purely syntactic. In contrast to the work of Selman and 
Hirst and others, who typically have the network relax to only one 
valid parse, Fanty's system computes all the possible parses of an 
input sentence in parallel.

Fanty based his network on the CYK parsing scheme 
(Hopcroft & Ullman 1979). Like many other schemes, Fanty's 
involves a hierarchy of units. On the bottom level is a set of units 
representing the input string, which Fanty refers to as the terminal 
units. There is one unit on this level for each symbol position in the 
input string, and then, within each symbol position, for each terminal 
symbol in the grammar. So, for each symbol position that is active in 
the input string, exactly one input unit is active.

The other two types of units in his network are the non
terminal units and the match units. Each of the three kinds of units 
has two sites, one for top-down and the other for bottom-up input. 
There is a non-terminal units for each combination of a non-terminal 
unit and a possible length (length of the substring that the non
terminal stands for, that is, the length of the substring is found in the 
leaves of the parse tree below that non-terminal), starting at every 
possible position of this substring. Thus the representation is highly 
local, requiring a large number of units.
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Figure 7.9. A sub-network of match units representing a grammar rule. One of the 
match units happens to be primed by input. From Fanty (198 ); reprinted by 
permission.

The match units are used to represent the production rules. 
Each production rule in the grammar has a number of match units 
associated with it. There is a match unit for each set of non-terminal 
units that can logically come together in a position and length- 
specific instantiation of a rule. So for instance, if there is, as on the 
left side of Figure 7.9, a unit for the non-terminal A starting at 
string position 1 and of length 2 (thus occupying positions 1 and 2 of 
the string) and there is a unit for the non-terminal B starting at 
position 3, also of length 2 (thus occupying positions 3 and 4), since 
these two non-terminals are adjacent (in terms of what they 
represent), the rule S->AB applies to them. Thus there is a match 
unit which receives input from these A and B units, as well as from 
an S unit which represents strings of length 4 starting at position 1. 
The former connections are bottom up, and the latter ones are top- 
down. All the links are weighted.

There are also match units for rules containing terminal 
symbols; the only difference is that each terminal symbol represents 
a substring of length one, while non-terminals usually represent 
longer substrings.

A parse takes place in two phases, a bottom-up phase and a 
top-down phase. Units in the terminal layer are initially activated by 
being "primed", which, in Fanty's implementation, gives them an
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activation value of 5, out of a possible 10. The weights are set so 
that, as this priming activation flows upwards, match units will 
become primed if all the units below them are primed. Non
terminal units are primed if any of the match units that give input to 
them are primed, since the priming of any one of these match units 
represents an instance of that non-terminal.

A parse is effected when a unit representing the start symbol is 
primed. There is such a unit for every possible length of the 
sentence; in the case of a sentence of length n, there is a special 
symbol in symbol position n +1 that provides input to the start 
symbol for a sentence of length n, causing it to turn "on". "On" and 
"primed" are the two states of a unit in Fanty's system. This start 
unit now provides top-down input to those units below it in the 
network. Every bottom-up connection has a corresponding top- 
down connection. Non-terminal units turn on if they are primed and 
the unit giving them the maximal top-down input is on. Terminal 
units turn on if they receive top-down input from a unit that is 
primed. Thus all the valid parse trees of the given input sentence 
come to be embodied in the network, each comprised of units that 
are on.

The network, as it has been described above, requires 
somewhat complex units, since they have three discrete levels of 
activation: off, primed, and on. Fanty shows that each of these 
three-state units can be easily replaced with two binary-state units, 
one for the bottom-up pass of activation, and one for the top-down 
pass.

Fanty modified the network so that it automatically 
disambiguated syntactically ambiguous sentences. He did this by 
making a winner-take-all network out of each set of match units 
corresponding to a given non-terminal unit, so that each sentence 
constituent can only participate in a parse in a single way, and thus 
only a single parse can be represented in the network. It was 
necessary to introduce some randomness into the network so that one 
of the match units would win out over the others, since the way the 
network was initially programmed, all valid match units would 
receive an equal amount of activation.

In order to learn new productions, or more specifically, 
instances of productions at particular locations in the sentence, Fanty 
created a new class of match units, which he called free match units. 
The network goes into "learn" mode when an attempt is made to turn 
on a nonterminal that is not primed. This indicates that a production
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instance exists that has not been detected and therefore should be 
learned. Each free match unit can respond to at most two local units 
below it, each representing a specific constituent at a specific position 
and a specific length. If a free match unit responds strongly after the 
system enters learn mode, it is recruited as a fixed match unit for the 
non-terminal that was missing a match, and the system leaves learn 
mode. (Learn mode is entered when a special unit called the learn 
unit is activated.)

Fanty also devised a quite elaborate mechanism to generalize 
these locally learned production instances throughout all the positions 
of the network. The basic idea behind this, taken from McClelland's 
(1985) Connection Information Distributor (CID), is that there is a 
global representation of each production, which is distributed 
throughout the network in the form of instances. I will not go into 
the details of this here.

There is room for substantially more work on natural 
language parsing to follow up this work. Fanty suggests learning 
and parsing more complex grammars, such as augmented phrase 
structure grammars, as a possible avenue of attack

7.8. PARSNIP: A Parsing System
Based on Back-propagation
Hanson and Kegl (1987) developed PARSNIP (a "snippet" of a 

parser), a connectionist model that learns to categorize the words in 
sentences into syntactic categories. They use the auto-associative 
version of back-propagation, in which the input and the teaching 
output are the same. They chose, as a training set of sentences, the 
Brown Corpus of text (Francis & Kucera 1979), which has about a 
million words. Each word in this corpus has an associated syntactic 
tag (noun, verb, etc.), which was chosen by human judges with a 
knowledge of linguistics.

They used a feed-forward network with 270 input units, 270 
output units, and 45 hidden units, for a total of 585 units in the 
system. Thus their system, like Cottrell and co-workers' image 
compression system (see section 2.31), must record in the hidden 
units a representation of the input that is more compact than the 
surface structure of the input sentence.

Only the syntactic categories of each word were input to the 
system, not the words themselves. A 9-bit string carried the 
syntactic information about each word; this string was formed by
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combining information about part of speech, inflection, punctuation, 
and whether a word is a function word, to result in 467 unique 
syntactic codes. They limited the length of the sentences shown to 
the network to 15 or less, padding out the input with zeros if 
necessary in order to use all 270 units. There were 25,000 such 
sentences in the Brown corpus. They also included codes for word 
boundaries in the input.

When they presented 10 sentences repeatedly in training, it 
took about 100 cycles through the data—that is, about 1,000 sentence 
presentations in total—until 95% of the codes for syntactic categories 
passed from input to output, unaltered. After the network was 
trained to this degree, they increased the number of training 
sentences to 100. Performance quickly plummeted to about 50% 
correct; it took about another 160 epoches of training on the new 
data—16,000 presentations—before the performance returned to 
95%. Finally, another 900 sentences were added to the training set, 
for a total of 1,000 sentences. Even after 180 epoches of 1,000 
presentations each, the network achieved no better than 85% correct 
performance, and performance fluctuated chaotically in the short 
term. Thus the network apparently reached its capacity.

They observed that word boundaries tend to be learned first, 
then mass nouns and personal pronouns, and then other forms. 
Generalization was tested by showing each of the three networks 
1,000 novel sentences. The network trained on 10 sentences gave 
about 50% correct performance, the network trained on 100 
sentences gave about 60% correct performance, and the network 
trained on 1,000 sentences gave about 85% correct performance (the 
same as on the training set).

PARSNIP is able to complete sentences with missing words, 
indicating in its output the syntactic category of the missing word. It 
is also not fooled by classic "garden path" sentences, such as "the 
horse raced past the bam fell". This is demonstrated by the fact that 
if the incorrect part of speech is inserted in the input sentence—for 
example, if "past" is characterized as an adverb, the system replaces 
it, in its output, with the correct category—in this case a preposition.

The system is also able to correctly auto-associate center 
embedded sentences, such as "The rat the cat chased died", but is 
unable to handle doubly embedded sentences. This behavior is 
similar that of people.

Hanson and Kegl do not feel that PARSNIP provides an 
adequate model of language acquisition, yet it has shown that it has
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acquired some of the important aspects of linguistic structure by its 
performance on the garden path and missing word tasks. They note 
that the system exhibits behavior that cannot be explained by simple 
finite-state grammars or matrices of transition probabilities. For 
instance, they point out that when faced with the sentence completion
task "the destruction of the city___ ", PARSNIP indicated that the
blank should be filled by a conjunction, even though a conjunction is 
not the most likely word to follow a noun. Like a standard context- 
free parser, PARSNIP is able to remember "long-distance" 
relationships.

An analysis of PARSNIP'S hidden units needs to be done in 
order to determine precisely what constituents the system 
understands. Hanson and Kegl do have evidence that clusters of 
hidden units respond either to noun phrases or verb phrases.
7.9. A Quasi-Context-Free Parsing System

Chamiak and Santos (1987) devised a connectionist system for 
parsing sentences drawn from a context-free grammar. They point 
out that connectionist parsers, insofar as they do not contain 
unlimited numbers of units, cannot be truly context-free, since they 
cannot represent sentences with arbitrary amounts of recursive 
embedding. Yet, since a connectionist parser can be devised which 
has, as its limit, a context-free parser, as the number of units goes to 
infinity, Chamiak and Santos argue that we ought to consider it 
context-free

They represent the 0
parse tree of a sentence by a 
two-dimensional array of 
units, each of which holds a 
terminal or non-terminal N P  V P
symbol of the grammar. The i 
bottom row of units contains | /  \
the terminal symbols in a n o u n  v e rb  N P  
sentence.

Above each terminal /
symbol, in each column, is n o u n
the complete path to the start
symbol. Thus the parse tree 710. Parse tree used by Chamiak and Santos 
in Figure 7.10 is represented (i987). Reprinted by permission, 
by the table in Figure 7.11.
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Links are made in the table between tokens in adjacent columns that 
represent the same constituent.

The parser works by taking in new word categories in the 
lower right comer of the table and shifting them to the left as it 
parses. Each time a new word category is moved into the table, all 
the cells in the table recompute their values, using rules that will be 
described shortly, and then the entire table is shifted one column to 
the left, to prepare for the input of the next word category.

The system has a number of 
rules that it attempts to enforce at 
every location in its parsing table.
Each location has a number of non
terminal symbols associated with it, 
each with a probability of being
present. Rules are used to raise and 
lower the probabilities of location- Figure 7.11. Table representing parse
non-terminal combinations. The tree from. Charniak and Santos
first such rule enforces the equality (1987)’ reprinted by permission.
of non-terminals that are linked together, left to right. Another rule
states that if the non-terminal in table position (i,j) is connected by a
link to a non-terminal in position (i- l,k ), then a non-terminal in
position ( i,j+ l)  should be connected to a non-terminal in position
(i,k + l). This makes sure that none of the connections in the table
cross; any chain of connections, as in Figure 7.12, is strictly above
or below any other chain. This is a property of a parse tree as it is
represented in this kind of table.

Grammatical rules are 
embodied in more such 
constraints. Chamiak and 
Santos give as an example the 
grammatical rule S<—NP VP, 
which implies that an NP at 
location ( i j)  leads to an S at 
(i, j+1), leading to a vertical 
representation of the parse 
tree. This is the case for 
every constituent of a rule such as A <-... B ...: A is placed in the 
slot above B in the table. Moreover, as rules start and end, 
constraints make sure that no units to the left and right of the start 
and end respectively of a rule are connected to the start or end

f S - S

s - S i ,VP - VP

NP VP ) NP - NP

noun verb del noun

Figure 7.13. Chamiak and Santos' (1987) 
representation of a parse. Reprinted by 
permission.

S
NP vp

NP
noun verb det noun



Neural Networks in Artificial Intelligence 225

symbols. (This is necessary because every slot in the table, whether 
it is empty or not, contains a pointer value.) Another constraint says 
that if a rule such as S<-NP VP has its VP inserted in the table, 
which is finishing (that is, it has "gobbled up" its the constituents 
which it represents), then it should encourage the S above it to finish, 
and vice versa. "Finishing," in this use, denotes terminating the 
chain of left-to-right connections between symbols representing the 
same constituent.

Because of the limitations of the size of the table, the system is 
limited in the lengths of sentences that it can parse. The table can be 
made arbitrarily big, at the expense of resources, to parse larger and 
larger sentences. The system handles right-embedded sentences fine, 
but it cannot handle center-embedded sentences, because new 
constituents moving into the table that are center-embedded have 
nothing in the parse tree to be connected to. This is somewhat 
consistent with psychological results that indicate that parsing center- 
embedded sentences is more difficult for people; nevertheless, the 
parser needs to be improved so that it can handle them, because 
people can.

7.10.Parsing Using a Boltzmann Machine
Selman and Hirst

(1987) use a Boltzmann
machine and simulated
annealing to accomplish
parsing in a context-free
network. They do this using
a network with two layers.
The input layer contains units
that represent the terminal FiSure 713- Selman and Hirst's <1987) 
symbol of a context-free repiesenation of grammatical rules. Reprinted
grammar. The parsing layer by permission.
consists of small groups of units that represent context-free rules. A 
rewrite rule such as S<— NP VP is represented by three nodes, one 
for each symbol, connected together in a clique. Selman and Hirst 
refer to such a rule clique as a connectionist p r im i t iv e .  
Connectionist primitives are linked together by special units referred 
to as binder units. For instance, if there are three rewrite rules for 
VP, these are linked to one another via binder nodes, which inhibit
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one another (see Figure 7.13). All nodes other than binder nodes are 
referred to as main nodes.

The input layer is divided into groups, one for each word in 
the input. Each group has a unit for each of the lexical categories— 
that is, the terminal symbols supported by the grammar. There are 
enough input groups to deal with every word in the longest sentence 
that the system supports. Exactly one unit is activated in each group; 
the rest are de-activated. Selman and Hirst use the two output values 
-1 and +1, as opposed to other work that uses simulated annealing, 
which uses 0 and 1. This entails slight modification of the simulated 
annealing equations. After simulated annealing, when the system has 
reached low temperature, the units outputting +1 represent the parse 
tree.

In their simulations, Selman and Hirst only had grammar rules 
with one or two symbols on the right-hand side (RHS). In order not 
to bias the choice of which rule is incorporated into the parse tree, 
they use a weight of +2 in the excitatory connections between units in 
one-symbol RHS primitives and connections of +1 in the two-symbol 
RHS primitive. The inhibitory weights (between pairs of adjacent 
binder units) were set to -3. If a main unit was connected only to 
binder nodes, its threshold was set to -2, otherwise it was set to 0. 
The binder units had a threshold of +2 (since they compete with one 
another, only the one receiving the most input should be activated).

Selman and Hirst were concerned that their stable states might 
not lead to states representing parses. As a possible solution to this 
problem, they proposed a scheme in which the energy is measured 
on the basis of whether all the units in the system have reached stable 
states. They built a sample network based on a sample CFG with 11 
rules taken from Winograd's textbook (1983). After simulated 
annealing, the units that were active embodied the parse tree of the 
sample sentence that was used. The temperature sequence used was 
T = 10,000, 4, 2, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, and 0.6 Each 
temperature involved 2,000 updates per unit. Thus, simulated 
annealing, as usual, was a slow process; if realized in hardware it 
would be much faster.

Selman and Hirst tested the effects of changing the weights and 
thresholds to incorrect values. The setting of one of the thresholds 
to an incorrect value led the system to fluctuate between two states, 
one of which was the correct parse. The stochastic nature of this 
algorithm led to this fluctuation; when the temperature was lowered 
to zero the system settled into one state or the other.
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7.11.Learning the Past Tense
Rumelhart and McClelland (1986a) offer a connectionist theory 

that attempts to explain how the past tenses of English verbs are 
learned, as an alternative to the traditional approach of rule-learning 
that is exemplified by the work of Pinker (1984). In this letter 
approach, unconscious rules are acquired by a special language 
acquisition device (LAD) in the mind, following Chomsky’s theory 
(1980). Rumelhart and McClelland argue that processes that appear 
to be rule-governed are in fact governed by other processes; they 
give the example of a honeycomb, whose characteristic hexagonal 
form is a result of the interaction of lower-level actions taken by the 
bees. They claim that a connectionist model can substitute for 
explicit rules.

They note that children typically go through three stages in the 
learning of the past tense. In stage 1, children know a small set of 
past forms, such as came, got, gave, looked, needed, took, and went, 
of which only two are regular (looked and needed). In stage 2, 
children are able to form past tenses using -ed, but they over
generalize to form charming errors like "taked". In stage 3, this 
over-generalization is corrected. The movement from stage 1 
through stage 2 to stage 3 is continuous and gradual, like many 
human learning processes.

Fixed
Encoding
Network

Pattern Associator 
Modifiable Connections

Decoding/Binding
Network

Phonological 
representation 
of root form Wickelfeature 

representation 
of root form

Wickelfeature 
representation 
of past tense

Phonological 
representation 
of past tense

Figure 7.14. Architecture of Rumelhart and McClelland's (1986d) verb learning 
model. Reprinted by permission.
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Their model consists of units phonologically representing the 
root forms and units phonologically representing the past tense 
forms. These are connected to each other in a pattern associator 
network. Two layers of units lie between these two sets of units, to 
form a four-layer network. The root form phonological units (layer 
1) are connected to "wickelfeature" units (see below) representing 
the root form (layer 2) These latter units are connected to 
wickelfeature units representing the past tense form (layer 3), which 
are connected to the phonetic units for the past tense, (layer 4) The 
idea is that a phonological representation of the root form given as 
input will cause a phonological representation of the past tense form 
to appear as output (see Figure 7.14).

They use binary threshold units with a logistic probability of 
becoming activated; this probability depends on the amount a unit's 
input exceeds the threshold. In their first example, they trained a 
simple pattern associator, using only a two-layer perceptron and the 
perceptron convergence procedure to recognize associations. They 
then extended their model so as to account for the representations of 
words, using the four-layer associator mentioned above.

Each sound is represented phonetically by its sound and the 
sounds of the two sounds surrounding it. These are called 
wickelphones, since this scheme was first suggested by Wickelgren 
(1969). For instance, tthe wickelphone representation of the word 
"cat" is #ka, kat at#. (# denotes a word boundary.) The trouble is 
that there are too many wickelphones, about 42,000. Therefore, 
Rumelhat and McClelland do not explicitly represent wickelphones.

Instead, wickelphones are coarse-coded; each wickelphone is 
represented as a pattern across another set of units (layers two and 
three in the description above), called the "wickelfeatures". Eleven 
bits are used to classify each sound in terms of whether or not it is a 
stop, fricative, a nasal stop, etc.; thus 33 bits are needed to represent 
the three sounds in a wickelphone. Each wickelfeature unit 
corresponds to a triple of features; one drawn from each phoneme 
participating in the wickelphone, in the nth place out of 11 features. 
For instance, a particular wickelfeature might represent all those 
phonemes that have a left context that is a nasal, a right context that 
is a stop, and whose central phoneme is voiced. They did not use all 
possible wickelfeatures, just about half, which "covered" the 
wickelphone territory sufficiently with their receptive fields. They 
also "blurred" the representation of wickelphones by randomly 
turning on some wickelfeature units that were similar to the
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wickelfeatures in given wickelphone's receptive field. This 
permitted the system to generalize based on limited experience.

Thus in the four layer system described above, only the inner 
two layers actually exist in the system: wickelfeature units for 
representing the base form of the verb (the input units) and 
wickelfeature units for representing the past tense. There were 460 
units on each side, and learning proceeded using binary threshold 
units, a logistic activation rule, and the perceptron convergence rule. 
Their model reflected the three stage performance of children, and 
was able to generalize to verbs it had not previously seen.

The model was first trained on 10 high-frequency verbs, then 
on 420 medium-frequency verbs. Then its responses to a set of low- 
frequency verbs was recorded. Performance on irregular verbs 
originally rose at the same rate as regular verbs (stage 1), then fell 
off as the regular verb performance continued to improve (stage 2). 
Irregular verb performance then started to improve again (stage 3), 
but never reached the level of regular verbs. In children, the error 
of over-generalizing was more likely to be made earlier in the 
learning process.

Their simulation can be criticized on the basis that it does not 
accurately simulate the actual data that children receive. It would be 
more accurate to simply train the network on all the verbs at the 
frequency that they occur naturally, and let the system simply attend 
to the more high-frequency ones in its behavior; this is what children 
have to do.

They show that the model correctly captures children's 
performance on a variety of different irregular verbs, even 
capturing many of the detailed features of the performance. For the 
verbs on which the system was not trained, 90% of the regular verbs 
have the correct performance in forming the past tense and 85% of 
the irregular verbs do. Correct performance on the irregular verbs 
is based on system sensitivity to "sub-regularities" in English, such as 
sing-sung, ring-rung (but bring-brung?). They note that both their 
model and children exhibit differing past tense forms for the same 
verb. Rule accounts need to be made probabilistic to account for 
this.

They point out that because of the superpositional nature of 
their distributed memory, their system performs automatic 
generalization. Thus, they claim, the system is not performing rule 
induction, as in a traditional memory scheme, but neither is it simply 
storing associations, or rather the associations it is storing are of a
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more general nature than the root form-past tense association at the 
phonetic level. Of course, one might argue, the salient features of 
the phonology have been built into the wickelfeature representation; 
a more complete solution to the problem would learn the relevant 
phonological features at the same time as learning the root verb-past 
tense association.

7.12.A Critique of "Learning the Past Tense"
Pinker and Prince (1988) develop a critique of Rumelhart and 

McClelland's past tense verb model, and a defense of rule-based 
models of language acquisition and their use in linguistics in general, 
which, as a theoretical technique, had reigned almost unchallenged 
ever since the rise of cognitivism in the 1950s—until connectionism 
came along. They note that language provides a critical test case for 
connectionism since linguistic theory has been notoriously rule-laden 
and reasonably successful in explaining linguistic phenomena.

Pinker and Prince point out that when Rumelhart and 
McClelland claim that their model does not involve rules, they mean 
that no rules are explicitly represented in their model. The 
Rumelhart and McClelland model relies heavily on wickelphones and 
wickelfeatures to achieve this. Pinker and Prince feel that 
wickelphones and wickelfeatures are limited as a representation 
medium. For instance, they point out that "slit" and "silt" have no 
wickelphones in common in their wickelphone representation; thus a 
transformation of slit to silt involves a complete replacement of 
wickelphones. This is not the case in terms of wickelfeatures, but 
they point out that such a substitution involves just as many changes 
in wickelfeatures as one that is phonetically much more distant. Yet 
the wickelfeature model takes clear advantage of similarities between 
the input and output representations to produce generalization. 
Pinker and Prince's complaint is that it does not readily support 
generalizations using the form slit-silt, although such 
transformations exist in human languages.

They note that the wickelfeature model readily models 
linguistically impossible phenomena, such as relating a word to its 
phonetic mirror image, for instance, dumb to mud. This is easy to 
do in the wickelfeature representation; simply give positive weights 
to connections between ABC in the input wickelfeatures and CBA in 
the output.
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Pinker and Prince point out that past tense is only one of 
several processes in English that use the t-d-id regular inflection, as 
in kicked (t), slugged (d), and patted (id). Other processes, such as 
the process that makes adjectives from nouns, as in hooked (t), 
homed (d), and talented (id) use the same inflections. The reason 
they point this out is to make the point that the inflection is not 
morphological, but phonological. Phonology is a system that exists 
outside of morphology; any morphological change is subject to 
phonological modification.

This is even clearer in the case of the (-s, -z, -iz) alteration 
(e.g., hawks, dogs, hoses) which is used in no fewer than nine 
different morphological contexts in English, including plural, 
possessive, contraction of "is", etc. It can be applied in completely 
novel circumstances, as in the end of a noun phrase: Pinker and 
Prince give the example "the man you met’s dog". Given the 
extraordinary productivity of language, this kind of thing can come 
up in a basically infinite number of ways; the phonological, 
morphological, and syntactic systems must interact in a complex 
fashion to attach the possessive in the place. Thus, contrary to what 
Rumelhart and McClelland's model implies, forming correct 
inflections is not simply a matter of forming associations between 
words. Of course, this does not invalidate connectionist models, but 
just implies that they must be employed as components of a larger 
system.

Among many other criticisms of details of the model, Pinker 
and Prince also accuse Rumelhart and McClelland's model of 
"morphological localism"—that is, for each morphological category 
there exists a separate system for forming the inflection. In this 
view, there would have to be one system for each transformation— 
past tense, possessive, plural, etc.—instead of a purely phonetic 
system serving the needs of several morphological transformations. 
This is not a flaw of connectionist models in general, but rather is 
specific to Rumelhart and McClelland's model. In fact, connectionist 
models exist that allow interaction between various levels of 
linguistic analysis, such as Waltz and Pollack's sentence 
interpretation model (see section 7.4.) Pinker and Prince’s criticisms 
of the Rumelhart and McClelland model can be viewed as a challenge 
to connectionists to formulate a more linguistically accurate model, 
although this may involve the representation of explicit rules and 
reduction of the connectionist model to the status of an 
implementation theory for complex systems of rules.
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7.13.Letter and Word Recognition
Rueckl (1986) developed a connectionist model to account for 

the mental process of letter and word recognition. His model was 
motivated by the desire to explain the well-known psychological 
effect of word repetition. Subjects in psychological experiments are 
better able to recognize words that they have recently seen. This is 
also true, Rueckl showed, of pseudo-words, that is, pronounceable 
non-words such as "zick". Retrieval models (e.g. Forster 1976, 
McClelland & Rumelhart 1985) account for these phenomena by 
theorizing that representations for words that are primed (perceived 
recently) are moved to a more accessible place from long-term 
memory, or, in the case of the pseudo-words, the representation is 
constructed during the priming, and it remains more accessible than 
other items in the long-term memory.

Rueckl's goal was to develop a model which explained these 
effects more simply. To do this, he turned to a connectionism. He 
also wanted to come up with a general model of the letter/word 
recognition process which explains such things as how words and 
letters are learned over time.

His model is partitioned into a series of modules or layers. 
The first module produces a retinotopic feature map (RTM) 
consisting of simple features such as lines, points, angles and curves. 
The RTM module consists of a two-dimensional representation of 
sensory input, like that impinging on a human retina. Each unit has 
a local receptive field which overlaps with the receptive fields of the 
units near it. There are units for each type of feature at each 
location. Units have responses that are best for a particular feature 
(such as a line at a particular orientation) but they also respond to 
similar features, so that a particular feature causes a pattern of 
activation in the RTM module. Thus, Rueckl's model is a distributed 
one.

Rueckl's second module is the object-centered feature map 
(OFM). The features represented in the RTM module are specified 
in the coordinate system of the visual fields. In the OFM module, an 
object's features are represented relative to the object's own center. 
Features are assumed to have patterns of activity that take up 
relatively few nodes in the OFM module, so that a number of 
features can be represented at once with little overlap.
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The third level, the object identity representation (01), consists 
of patterns of activity corresponding to entire objects, which can be 
either letters or words, depending on the stimuli given to the system.

The goal of Rueckl’s system is to learn to form the same 
representations in the OFM and 01 levels when the same object 
(letter or word) is presented at the RTM level, regardless of where 
in the retinal field the object is presented. This learning proceeds by 
having the system first learn to recognize simple objects, then 
complex conjunctions of these objects.

The first problem that Rueckl faced was the problem of 
achieving translation invariance; that is, to take a simple feature and 
have the system learn to evoke the same pattern of the OFM level, no 
matter where it was presented on the RTM level. One possible 
solution is brute-force: first present a single RTM-OFM association, 
then clamp the OFM pattern while RTM patterns corresponding to 
other positions of the stimulus are presented, and reinforce 
associations between each of these RTM patterns and the OFM 
pattern.

After simple elements are learned, the next task for the system 
is to learn the RTM-OFM relationship of complex conjunctions of 
elements. One problem that Rueckl discusses is the possibility that 
the representations of different simple elements in the conjunction 
will interfere with one another. One would hope that the 
representations will be sufficiently sparse so as to make this unlikely, 
but there is no guarantee of this.

One might argue that this loss of information is acceptable, as 
long as there is a unique representation for each conjunction, but 
Rueckl points out that information such as the number of distinct 
features in the stimulus may be lost; he gives the example of two 
horizontal lines in the stimulus, one above each other, like an "=". 
Since, by assumption, both lines would cause the same pattern in the 
OFM, the OFM would only reflect the presence of one feature, 
rather than two. Clearly the spatial relational information relating 
the two features must be retained in some form. Rueckl suggests the 
solution due to Hinton (1981b). Hinton adds a population of nodes 
representing reference frames at orientations and positions that 
sample the space of possible frames in some manner. These nodes 
serve to gate connections between RTM and OFM. Thus the two 
horizontal bars would excite different patterns in the OFM.

Rueckl also considers to the problem of classes of objects that 
are visually distinct. One would like to have the system respond
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similarly to "A" and "a", even though their visual patterns are quite 
distinct. In order to handle this, he posits that there is another 
module, the contextual model (CM), which along with the OFM, 
gives input to the OI. In order for "a" and "A" to have a similar 
pattern in the OI, it is sufficient for the CM to give the same input to 
the OI while both of them are presented. This will allow them to be 
classified together for certain purposes, while retaining their own 
distinct visual patterns. This type of representation can account for 
experiments (McClelland 1976) in which, because of limited stimulus 
presentation time, subjects are able to report the identity but not the 
case of a letter stimulus.

Rueckl considers the problem of word identification. While 
words, like letters, are just conjunctions of features, there is 
evidence, as common sense might conclude, that what is visually 
salient about words is the particular sequence of letters involved 
rather than the global impression that the configuration of features in 
the word confers.

The prerequisite for word recognition by Rueckl’s system is 
therefore letter recognition; he assumes it has achieved this. Thus 
the pattern in the OFM caused by a word will be the superposition of 
the OFM patterns for the constituent letters, containing no 
information about their order—thus "rat" and "tar" would lead to 
the same OFM pattern. If this spatial information is to be retained 
then Hinton's gating scheme mentioned above may be used.

Word identification relies on the following property of the 
system: hat the input provided to OI by OFM by a particular letter is 
sufficiently similar, regardless of case, so as to make words in upper 
and lower case recognizable as the same word. It is also dependent 
on the gating by reference frames, in order to convey information 
about the relative position of letters in the word. Both of these are 
properties of the form of coarse coding, since the information about 
the relative position of the letters is not represented explicitly, but is 
a property of the overall representation.

Having elaborated his model, Rueckl is in a position to account 
for the word-repetition effect. It is understood by positing that the 
first time a word is presented, the connections between the OFM and 
OI units that are active during recognition are strengthened. This 
makes subsequent recognitions easier, because the relaxation process 
leading to recognition proceeds faster. Thus the word-repetition 
effect—both in its actual word and pseudo-word versions—emerges 
as a natural feature of the model. The explanation is less complex
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than that given by a retrieval model. The major difference between 
the word and the pseudo-word processes is that the pseudo-word 
representation constructed is new.

Rueckl considers the problem of how multiple words are 
perceived at once. The obvious answer is via multiple channels 
which the brain, with its multitudes of neurons, would be able to 
provide. The problem with duplicate channels is that word learning, 
as described above, is a local process occurring in a single channel. 
Thus, if you want to process words in multiple channels, they system 
must complicate the learning process.

One system that uses multiple channels is McClelland's 
Connection Information Distributor (1985), in which learning takes 
place in a central channel and this information (weights) is 
distributed to multiple channels for the purpose of parallel 
recognition. The alternative is to process words and letters serially, 
attending at different points in time to different elements of the 
stimulus.

If words are processed sequentially, then one would expect 
that letters would be too. This would lead you to believe that single 
letters are recognized faster than whole words, and that short words 
are recognized faster than long words. In fact, this is not the case, as 
Rueckl points out: words are recognized faster than single letters, 
and long words are identified just as fast as short ones are.



Postscript

In the less than ten years since the active revival of neural 
network research, researchers have shown the applicability of 
connectionist models to a wide variety of cognitive phenomena. 
These models have lent themselves naturally to the solution of 
cognitive problems requiring the integration of multiple constraints, 
such as object recognition or sentence processing. Several learning 
algorithms have been proven effective at embodying systems of 
constraints in a network.

There are several challenges ahead for researchers who want 
to discover networks that have general-purpose cognitive 
capabilities. Most researchers agree that this goal is dependent on the 
embodiment of large amounts of knowledge in a system, and it is 
best that this knowledge be learned, rather than explicitly wired in. 
This will require systems with numbers of units that are several 
orders of magnitude larger than the current system (a typical current 
system might have 102-105 units; the brain has about 1011). Learning 
times, using current algorithms, even with relatively fast computers, 
for such larger networks, may be prohibitive. The development of 
special-purpose hardware that implements such algorithms as error 
back-propagation will ease this problem. Researchers will have to 
think carefully when designing the topology of their networks, in 
order not to waste connections. One principle they can use is to give 
each neuron a receptive field consisting only of nearby neurons; this 
principle is used by the brain.

Another major challenge to connectionists is to meet the 
objects given by Fodor and Pylyshyn that neural network models 
lack the representational power of logic or list-based symbolic 
computation. One aspect of this challenge is to find a connectionist 
implementation of the type/token distinction that expresses in a
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satisfying manner the distinction between a class and one of its 
members. A related issue is how one might bind variables in a neural 
network.

Most neural network models—for instance, almost all of those 
reviewed in this book—are concerned with a single domain of 
cognition, such as language processing or vision. Part of the reason 
for this is cultural, in that most researchers tend to be specialists in 
only one of these areas, and it is difficult to become expert in more 
than one. Nevertheless, most artificial intelligence researchers would 
agree that the development of intelligent systems is dependent on 
building bridges between two or more of these areas, especially 
between vision and natural language. Future connectionist systems 
will be highly modular, with sub-networks (modules) devoted to 
processing different types of information, and with the various 
modules passing information to one another.

It is still unclear which school in AI, connectionism or 
symbol-processing, will be the most successful, ultimately. Perhaps 
an approach that borrows ideas from both schools will succeed. 
There is the danger that much talent (and research money) may be 
drawn away from traditional AI in favor of connectionism, and 
traditional AI (which I do not think has played itself out) may be 
neglected. If this occurs, it may be unfortunate, because 
connectionism (given the current level of knowledge of the brain) 
may be a blind alley. Yet, if it does not produce results, the 
pendulum may swing back toward traditional AI. It is, however, 
very likely that connectionism will produce commercial results in 
both speech recognition and letter recognition, perhaps even of 
handwriting, within 10 years, if current trends in computing costs 
continue.

The ready availability of connectionist simulators (such as 
those available from the University of Rochester, the University of 
California at Los Angeles, and the George Mason University 
computer science departments) and inexpensive workstation-based 
computing has led to an explosion of neural network research. To 
follow the exciting course of events, one might consider joining the 
International Neural Network Society (INNS), attending its 
conferences or those of the AI societies, or reading some of the 
journals cited in the bibliography. Or one can simply get one of the 
simulators and start building models; many fruitful learning rules,



238 Postscript

cognitive domains, and network topologies are, no doubt, still to be 
explored.
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