
Implementing Spatial Relations in Neural Nets:

Figure/Ground and Containment

Matthew Zeidenberg

�

University of Wisconsin{Madison and Electrotechnical Laboratory, Japan

October 1991

1 Introduction

There is, no doubt, a division among mental functions. Some are learned, while

some are innate. I argue that lower functions, that is, those that are perceptual

primitives and are required for much higher level processing, are more likely to

be innate than are higher functions, which are more likely to be learned (and

therefore culturally a�ected).

In the �eld of object recognition, it is likely that recognizers for simple

objects, such as edges or corners, are built in, and the recognition of more

complex objects is learned, in terms of the innate recognition of more simple

components. This is because these simple objects exist everyone in the world,

and it would be wasteful for the organism to spend time and energy learning how

to recognize them. It may be, also, that it is impossible to learn to recognize

both simple objects and then more complex ones.

Some simple spatial relations among objects are, I would maintain, in the

class of innate functions. That is, the species has learned to recognize certain

spatial relations, so the individual need not. Foremost among these are the

relations that roughly correspond to the English prepositions in, on, over, under,

across, and between.

In order for spatial relations between objects to be computed, objects need

to be recognized. That is, the visual scene has to be segmented into signi�cant

chunks before the spatial relations between those chunks can be computed. Also,

the nature of the semantics of the spatial relations between between objects

depends on the nature of those objects themselves. For instance, if something

�

This research was partially carried out while the author was a participant in the Summer

Institute in Japan program sponsored by the NSF and Japan's Science and Technology agency.

I would like to thank my host at the Electrotechnical Laboratory, Kazuhisa Niki and my

research advisor at UW-Madison, Leonard Uhr, for helpful advice and discussions.

1



is in a box, it can be sticking out, but if it is in a room, it cannot. Of course

there is a di�erence between the natural language usage of these prepositions

and any formal function that can be computed from a scene.

This paper discusses one inportant spatial relationship, that of containment

(and the related concept of an object's �gure and ground). I recognize that the

concept of containment varies depending on the objects concerned.

Let us consider, however, the simplest form of containment: the case in which

both objects are a connected collection of 1's in a binary array, they are both

closed (that is, have no breaks in the their outer perimeter), and one object (A)

is contained inside another (B) if every bit on A's perimeter (as well as every

bit in A) is contained within the perimeter of B.

Another way of putting the last statement is that every bit in A is contained

in the �gure of B. The �gure of B is simply all points that are within B, whether

or not they are part of B or not. The ground of B is the complement of the

�gure.

Thus one way to compute whether A is contained in B is �rst to compute

the �gure of B. If all points in A are contained in �gure(B), that is, if A itself

is a subset of �gure(B), then A is contained in B.

How then, are we to compute the �gure and ground of an object?

2 Computing the Figure and Ground of an Ob-

ject

Most approaches to computing the �gure and ground of an object have been

based on the idea of spreading activation. For instance, Kienker et al. [2]

computed the �gure/ground of a spiral by using a simulated annealing to get out

of the local minima that a simple relaxation model would settle into. Spreading

activation is modelled in a connectionist network by having nodes reinforce their

neighbors, and (in the case of �gure/ground) having the edge (perimeter) nodes

reinforce nodes on one side of them and inhibit nodes on the other.

It seems likely that humans use some sort of spreading activation to compute

the �gure of an object. Yet simulated annealing is a very slow technique to

compute anything, and it is not a very plausible algorithm from the point of

view of human biology.

The standard algorithm (see, for example, Sedgewick [5]) for computing

whether a point x is inside a closed �gure A is the following: draw a line from x

to any point completely outside A (such a point is easily found from the extremal

points of A on any coordinate system.) If this line crosses the perimeter of A an

odd number of times, then x is contained in A, otherwise not. This is because

exits and entrances to the �gure alternate as one moves out from x on this line.

This algorithm can be readily implemented in a neural network. One can use

a parity network. Given two grids, the input grid containing the object, and the

2



�gure grid that one wants to contain the computed �gure, one can connect each

node in the �gure network to all the nodes above its corresponding node in the

input network, and thereby compute the algorithm stated above. Various types

of parity networks are possible. I have chosen a cascaded parity network, since

it minimizes the number of nodes and connections needed. See the Appendix

for details.

The direction chosen for the computation of the number of crossings is ar-

bitrary. We can simply, as indicated above, choose the horizontal direction. If

the object A has no gaps, this will pose no problem.

There are some slight problems with this algorithm. It does not work in

the case in which the point in question lies along a tangent to the �gure in the

direction chosen. Also, it does not account for thick edges. One cannot simply

pick a point on the grid and count how many points are on the raster line in the

image, to the right of it, because two or more of these could be adjacent points

in the same edge. In order to deal with this, we can perform edge thinning,

which is a standard image processing algorithm, here implemented in a neural

network.

In order to build a certain amount of redundancy into our network, we

use two directions for the thinning process. and the subsequent �lling in of

the �gure. For convenience, we use the two axis directions of the input grid,

although we could in principle use other directions. We �rst compute from the

original input a version of it thinned in the x direction (to the right), then we

�ll this version using the parity network as described above. We do the same

for the y direction (towards the top of the grid). We now have two �lled shapes,

one for each direction. We compute an image consisting of those pixels which

are on in both of these �lled shapes or in the original input. Note that the

logical functions "and" and "or" which are used to come this �nal image are

readily computed in a neural network.

We perform thinning in the horizontal direction as follows: each pixel that

has a neighbor on either the left or the right dies. This is repeated until the

only pixels remaining have no horizontal neighbors. The same is done in the

vertical direction.

Note that, in the horizontal case, this thinning has a tendency to disrupt

edges that are horizontal, even if they are thin. Thus the computation of �gure

in the vertical direction (bounded by these horizontal edges) will be disrupted.

The same holds for the converse situation. When we compute the "or" of the

two �gures, this disruption is repaired (i.e. "leakage" from the �gure caused by

the disruption of edges is not put into the �nal �gure.)

Ths result of this is tht we compute, in parallel, the �gure of each of the

objects found in our original input object. The thinning and �lling process goes

on between between levels 3 and 4 in �gure 1; details of it are left out (that is,

the intermediate thinned and �lled images).

3



Level 3

level 4

Level 2

Level 1

Level 5

Level 6

(R,T,C)

Triangle in Rectangle Circle in Square Circle in Triangle

3 Computing Containment fromFigure/Ground

Once we have computed the �gure of each object in the image in parallel, we

are in a position to compute containment as we outlined above. Levels 5 and

6 in �gure 1 in the network do this. Consider the three units at the left in

�gure 1. These units have receptive �elds that detect the rectangle, triangle,

and circle respectively. In this sense they are duplicates of the units on level

2. The di�erence is that they are only detecting these shapes within the �gure

of the square, if the square is present. The situation shown in �gure 1 is that

in which all three objects in the input are present, as shown on level one. If,

instead, for instance, the square is not present in the input, then none of the

nodes in levels 2-5 that detect it (in the left column in the �gure) would be

4



activated. Thus, for instance, the second node from the left in level 5 detects

the triangle in the �gure of the square. Note that the fact that the nodes in level

5 are all dark does not mean that they are activated. In the situation shown in

�gure 1, if the 9 nodes in level 5 are numbered from 1 to 9, from left to right,

then the activated nodes are 1, 2, 3, 5, 6, and 9. Note that nodes 1, 5, and 9,

which detect the rectangle, triangle, and square in their respective �gures, have

the same function as the three nodes in level 2, since if an object is present in

the original input, then its �gure will always be constructed, and an object is

always present in its own �gure, by de�nition.

In order, for instance, for the circle to be present in the rectangle, the rectan-

gle must be present, the circle must be found in the �gure of the rectangle, and

the circle must be present. These facts correspond to the activation of nodes 1,

3, and 9 in level 5. This is why these nodes output to node 2 in level 6, which

detects this fact. Similarly, nodes 1 and 4 in level 6 each receive input from

three nodes in level 5. Strictly speaking, there should be six nodes in level 6,

but since three of them correspond to impossible containment relations (due to

size ordering), such as the containment of the rectangle in the triangle, they

have been left out, in the interest of simplicity. Nodes 4, 7, and 8 in level 6 are

equally useless, since they detect impossible situations.

The number of nodes at level 5 is the square of the number of objects n that

the system is capable of processing. Here there are 9 nodes at level �ve and 3 at

level 2. Since, as we have noted, 3 of these nodes are unnecessary, because of size

ordering, the actual number of nodes needed at level 5 is 6, or n(n+ 1)=2. This

represents a combinatorial explosion in the number of nodes required, due to

the local encoding employed by this system. In a real cognitive system, such as

that of people, one would expect a capability to recognize thousands of objects,

which would require millions of nodes at level 5 of our system.

The only answer to this criticism that I can see is the use of attention. It is

a common rule in psychology that people can only attend to a small number of

objects at a given time. This suggests the following modi�cation of the system

as described above.

Many parallel recognition channels observe the input scene, but at any time

only a few of these channels are ones that are selected, which are the attended-to

channels. For each of these channels, a symbol of what they are recognizing is

output, as well as a the object itself in isolation (as in our system at level 3),

and its scale, location, and orientation. The attended-to channels are "switched

into" our system at levels 1 to 3. Our system would have a capacity of 5-

10 channels. The output nodes at level 6 Would be interpreted in terms of the

symbols that were output by the attended-to recognition channels. For instance,

the �rst node at level 6 would be interpreted as in(triangle,rectangle) because

the symbols for triangle and rectangle would be output by the �rst two channels

that are switched-in.

Sandon [4] has studied the problem of implementing attention in connec-

tionist networks. Also, Jacobs et al. [1] have studied modular neural networks

5



in which a form of switching, or gating, as they call it, similar to what I have

described is performed.

4 Future Directions

This general approach, as I have outlined it, could be applied to the recog-

nition of a variety of spatial relations, which is part of my ongoing research.

Each relation (such as the relations associated with the prepositions around,

across, between, etc.) has a di�erent semantics, and requires a di�erent type

of network to compute it. Still, we can have the common goal of expressing

the outputs of these various networks in terms of a propositional form such as

in(triangle,square) or between(triangle,square,circle).

Once propositional representations of simple spatial relations, suitably tem-

porally marked, are computed by local or distributed nodes in a neural network,

it remains to do inference with them. Several authors (e.g. Pollack [3], Touret-

sky [6]) have shown that one can do production-system-like inference in a neural

network, but have not shown any particular advantages of doing it this way. It

is therefore not necessary to build inference systems explicitly in terms of neu-

ral networks, since one can always re-implement standard systems in a network.

Thus one approach that one can take is to translate the output of the neu-

ral network into predicates, and then do reasoning using a standard logic- or

production-system-based approach.

If we want to learn rules of the form:

go(A;B;C; t1; t2)$ at(A;B; t1)^ at(A;C; t2)^ path(A;B;C; t1; t2)

can we use network based learning to do it? There is a severe problem that

is caused by the presence of time. That is, if one of the inputs to the system

is a clock that ticks many times as an object moves across a grid, the system

will detect at(A;B; t1), at(A;B; t + e), at(A;B; t + 2e) until the de�nition of

at in terms of B's neighborhood, however that may be de�ned, is no longer

satis�ed. We again have the problem of attention, that is, of deciding which

piece of information is salient. The presence of time creates an explosion of facts.

Time is implicitly present in many statements about spatial relationships: for

example, in the sentences "The ball rolled between the posts", or "The tiger

ran around the tree."

It is clear that some understanding of the concept of a path in time is critical

to an understanding of sentences of this type. Thus paths form a starting point

for building systems that can comprehend time-based spatial relationships.

References

[1] Robert A. Jacobs, Michael I. Jordan, and Andrew G. Barto. Task decom-

position through competition in a modular connectionist architecture: The

6



what and where vision tasks. Technical Report 90-27, Department of Com-

puter and Information Science, University of Massachusetts, Amherst, 1990.

[2] Paul K. Kienker, Terrence J. Sejnowski, Geo�rey E. Hinton, and Lee E.

Schumacher. Separating �gure from ground with a parallel network. Per-

ception, 15:197{216, 1986.

[3] Jordan B. Pollack. Recursive distributed representations. Arti�cial Intelli-

gence, 46(1-2):77{105, Nov 1990.

[4] Peter A. Sandon. Simulating visual attention. Journal of Cognitive Neuro-

science, 2(3):213{231, 1990.

[5] Robert Sedgewick. Algorithms. Addison-Wesley, Reading, Mass., 1983.

[6] D.S. Touretzky. Boltzcons: Reconciling connectionism with the recursive

structure of stacks and trees. Proceedings of the 8th Annual Conference of

the Cognitive Science Society, pages 155{64, 1986.

7


