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A simple dynamic model of agent operation of an infrastructure system is presented. This system
evolves over a long time scale by a daily increase in consumer demand that raises the overall load
on the system and an engineering response to failures that involves upgrading of the components.
The system is controlled by adjusting the upgrading rate of the components and the replacement
time of the components. Two agents operate the system. Their behavior is characterized by their
risk-averse and risk-taking attitudes while operating the system, their response to large events, and
the effect of learning time on adapting to new conditions. A risk-averse operation causes a reduction
in the frequency of failures and in the number of failures per unit time. However, risk aversion
brings an increase in the probability of extreme events. © 2009 American Institute of Physics.
�doi:10.1063/1.3234238�

Many large networked systems, such as those found in
critical infrastructures, exhibit characteristics common to
near critical complex systems. These characteristics in-
clude long time correlations and heavy tails. The interac-
tion of human dynamics with the system is obviously cru-
cial to their operation and in fact is one of the main
mechanisms by which they seem to remain near their
operational limits (critical point). To explore the impact
of different types of behavior on the systems dynamics we
have implemented agents coupled to a simple model of a
complex infrastructure system to control various aspects
of the systems operation and upgrade. We have found
that, perhaps contrary to intuition, the system has an
increase in large costly failures (a heavier tail) when the
agents are risk averse in their operations despite having
an overall decrease in the number of failures. With risk
taking agents the opposite is true. This has important
implications for operational planning as well as modeling
complex systems with human dynamics included.

I. INTRODUCTION

Infrastructure systems suffer from rare nonperiodic
large-scale breakdowns that lead to large economic and other
losses by the community and sometimes can cause personal
injuries and even loss of lives. The initiating causes of these
events are very diverse, ranging from incidents caused by
weather, to malfunction of system components and to willful
acts. Whether intentional or not, these events can threaten
national security. Some examples of such extreme events are
the August 14, 2003 blackout in Northeastern America, the
consequences of the Katrina hurricane in the New Orleans
area, etc.

Today’s infrastructure systems are complex technologi-
cal systems for which such extreme events are “normal ac-
cidents.” As Perrow1 indicates, such normal accidents are

characteristic of these systems and it is not possible to elimi-
nate them. Additionally, these extreme events tend to gener-
ate a risk-averse attitude in the people managing and operat-
ing infrastructure systems. This change in attitude, in turn,
modifies the probabilities of occurrence of such events.

Some negative consequences of risk-averse operation on
complex systems have been explored by Bhatt et al.,2 who
used a model for the propagation of the failures inspired by
how forest fires spread.3 Altmann et al.,4 using a model of
human reactions to river floods, showed that the commonly
employed method of fighting extreme events by changing
protection barriers in reaction to them is generally less effi-
cient than the use of constant barriers to contain them. In this
paper, we use a simple model of infrastructures to further
explore some of the consequences of such changes in opera-
tional attitudes to extreme events. We explore a range of
behavior by system operators, varying from risk-taking to
risk-averse operation.

We use a very simple model of the cascading process
that may lead to extreme events. It is based on the CAS-
CADE model.5–7 The CASCADE model is a probabilistic
model of load-dependent cascading failure, which was in-
spired by fiber bundle models.8,9 We assume a system with
many components, which is under stress. This stress creates
a certain distribution of loads among the components. When
a component fails, load is transferred to some of the other
components. However, in trying to model the behavior of
infrastructure systems like the power grid, instead of using
conservation of load on the components it was found to be
more appropriate to use a constant load transfer, which leads
to a power law distribution of the size of the events. Here we
measure the size of an event by the number of failed
components.

Here, we extend the CASCADE model to include a dy-
namic component that evolves in a manner analogous to the
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OPA model,10 which we use to model the behavior of the
evolving power grid. Time evolution occurs at two resolu-
tions or scales. Over a short time scale, which is on the order
of minutes, small and large cascades can develop. The long
time scale corresponds to the evolution of the system over
years. The dynamic evolution over the long time scale is
governed by a daily increase in consumer demand that raises
the overall load on the system and a concurrent engineering
response to failures that involves component replacement
and upgrades. These components may fail by either overload
or random failure. They also have a characteristic lifetime;
therefore, timely replacement of the components decreases
the probability of failures.

In such a dynamical model the system reaches a steady
state in which failures of all sizes may occur at different
times. The system is governed by two parameters: the up-
grade rate of the components � and the replacement time of
the components �R. Components are replaced periodically as
they age by one of the agents who decides when the optimal
time to do so is. There is a maximum replacement time,
which is set by the average failing time for the component.
Additionally, components are of course replaced when they
actually fail. Two agents control these parameters and learn
how to operate the system in order to maximize a given
utility function. Each agent’s utility function has a well-
defined economic term, which is the profit of selling the
services minus the expenses of maintaining and upgrading
the system. Each function also includes a penalty for failures,
which is not only monetary and in general is proportional to
the failure size.

It is through the penalty for failures that we can intro-
duce differing attitudes on the part of the agents. Using basic
ideas from prospect theory,11,12 we can color this penalty and
make the attitude of the agents risk averse or risk taking. By
changing the agents’ attitudes in such a manner, we can
evaluate the impact of the changes on the operation of the
system. In particular, we are interested on how the probabil-
ity of extreme events is affected by such changes in the atti-
tude of the agents.

The rest of the paper is organized as follows. In Sec. II,
we describe the basic ideas behind the CASCADE model
and its extension into a dynamic model. In Sec. III, we dis-
cuss the parameters controlling the operation of the system
and the agents, which are responsible for the decision-
making process leading to their determination. The numeri-
cal results of the model are presented in Secs. IV and V. In
the former, we discuss the operation of the system with a
fixed attitude on part of the agents. In the latter, we discuss
the effect of changing the attitude of the agents in response
to extreme events. Finally, the conclusions are given in
Sec. VI.

II. A SIMPLE MODEL FOR THE INFRASTRUCTURE
SYSTEM

Let us consider a system with N components. In the
spirit of the CASCADE model,5 we assume that each com-
ponent i in the system has a load Li. The loads are distributed
uniformly between a minimum load Lmin and a maximum
load Lmax. The CASCADE model assumes that �1� compo-

nents fail when their load exceeds a prescribed value Lfail,
and �2� when a component fails, a fixed amount of load P is
transferred to k�N randomly chosen components.6,7 In this
new version of the model, the components are also charac-
terized by an average lifetime Tf. This allows for another
mechanism for failure. We allow the components to age due
to operational stress, which can lead to failure.

The survival function of a component when aging is
taken into account is given by13

S�T� = exp�−
1

1 + �
� T

Tf
��+1� , �1�

where ��−1. In what follows, we only consider the case of
�=1.

Once one or more components fail, we apply the rules of
the CASCADE model listed above, so a constant load P is
transferred to k components. If any of these components then
has as a result a load greater than Lfail, this component fails
in its turn. Thus, the failure of one or more components can
possibly lead to a cascading process. The process continues
until no more components fail. In what follows we take
Lfail=Lmax.

To reduce failures, components are replaced periodically.
The replacement time of the components is �R. The ratio of
this replacement time to the failure time Tf affects the prob-
ability of starting a cascade.

In the CASCADE model, all loads can be normalized in
the following way:

li =
Li − Lmin

Lmax − Lmin
, p =

P

Lmax − Lmin
. �2�

After such a normalization, we are left with two independent
parameters: the normalized load transfer p and the ratio of
the replacement time to the failure time, �R /Tf.

The mean size of the cascades increases with the value
of p. There is a critical value of p, pc=1 /k, after which the
cascade size increases sharply. This is shown in Fig. 1, where
we have plotted the mean cascade size as a function of p.
The figure is the result of calculations for a system with
N=1000, k=100, and �R /Tf =0.008, so the frequency of cas-
cades in the subcritical regime is low.

One interesting aspect of the CASCADE model is that
the distribution of the cascade sizes can be calculated

FIG. 1. �Color online� The mean cascade size as a function of p.
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analytically.5 At the critical point, the distribution has a
power tail with a decaying exponent equal to 1.5.

We have generalized the cascade model by introducing a
process involving two time scales. On the fast time scale,
which we call minutes, we follow the cascading process as
described above. Then, we complete the model by introduc-
ing dynamics for the long time scale. On this time scale, the
basic unit of time is a day. In modeling the long-term dy-
namics, we follow closely the OPA model,10 which we have
used to study the behavior of the power grid.

The evolution goes as follows.

�1� We introduce an averaged load for the whole system,
LA�t�=L0 exp��t�, which is a function of time with a
constant rate of growth � which represents the rate of
increase in the demand. At the beginning of each day,
the loads of the components are uniformly distributed
around this mean value within a range �LA.

�2� At the beginning of each day all components are tested
for failure, where their probabilities of failure are dis-
tributed as in Eq. �1�. If there are any failures, a cascade
process starts as described above.

�3� At the end of the day all components that are due for
replacement or have failed are replaced.

�4� After a cascade of a minimum size �greater than 10% of
the system size�, the maximum load of all components is
increased by a factor ��1. This represents an upgrade
of the system in response to failures.

As in the case of the OPA model,10 this system evolves
to a steady state in which failures and replacements are in
equilibrium in a time-averaged sense.

III. BASIC PARAMETERS AND AGENT OPERATION

The operation of the system described in Sec. II is con-
trolled by four parameters. One is the rate of increase in the
demand �, which is taken as a constant. We use �=1.000 05,
which is approximately the average daily rate of increase in
the electric power demand in the USA over the past two
decades. The second parameter is the load transfer p. This is
a parameter that depends on the nature of the infrastructure.
When we have a model of the power transmission grid in-
frastructure, such as OPA, p corresponds to the redistribution
of power flow. Here we fix its value to be close to but below
the critical value pc. The motivation comes from analysis of
the power systems14,15 that shows a probability distribution
of blackout sizes with a power tail having a decay index that
is somewhat larger than the critical value for the CASCADE
model.

The two remaining parameters are the upgrade rate of
the components � and the replacement time of the compo-
nents �R. We use them as the actual control parameters for
the operation of the system. There are two independent
agents: each controlling one of these parameters and each
trying to optimize a utility function involving that parameter.
Agent 1 controls the replacement time of the components �R

and agent 2 controls the rate of upgrade. In addition, com-
ponents are of course also replaced when they fail.

The utility function for both agents has the same struc-
ture; it has basically three terms. The first term characterizes
the benefit the agent gets from having the system working.
This benefit is taken to be proportional to the electricity sold.
Following this there are two cost contributions. These are the
“real” cost of replacing or upgrading a component and the
cost for failure. In principle, the first one is easy to estimate;
however the second one is more complicated. It is this term
where perception comes in and this must be modeled.

The utility functions for both agents are

U1 = Wp�N − NF� − WRNR − WF1N��q1,NF/N� , �3�

U2 = Wp�N − NF� − WU1�� − 1� − WU2�� − 1�2	

− WF2N��q2,NF/N� . �4�

Here, Wp is proportional to the price the consumer pays
for the “electricity” and is of course the same for both agents.
This first term represents the benefit for the agents of having
the system working, with increasing benefit for improved
operation. On the cost side, for the first agent, the cost is
proportional to the number of components replaced, WR is
the cost of replacing a component, and NR is the number of
components replaced by maintenance.

For the second agent, the cost of upgrading components
has two contributions. First, the second term in Eq. �4�,
which is independent of time and represents the amortization
of upgrade cost over time. It is taken as proportional to the
upgrade level �−1 with proportionality constant WU1. The
second contribution, the third term in Eq. �4�, is the cost
when an upgrade occurs after a cascade, which represents the
immediate implementation cost of the upgrade, this term is
taken to be proportional to ��−1�2; the constant of propor-
tionality is WU2. The multiplier 	 is 1 when there is a cas-
cade and 0 otherwise.

Finally, the last term for both functions is the cost �eco-
nomic, social, and political� to agent i for having components
fail. When no perception of failure is included, this cost is
taken to be proportional to the number of failed components
that day, NF, with a proportionality constant WFi. The func-
tion � that multiplies this term reflects the perception of how
bad a failure is. Therefore, this is the subjective contribution
to the utility function. We model it using functions normally
used in prospect theory.11,12 That is

��q,x� =
xq

xq + �1 − x�q . �5�

In principle, it is possible that each agent has a different
perception of the risk. Different values of q correspond to
different attitudes of the operator regarding risk: risk aver-
sion �q�1�, which heavily penalizes the most frequent
events, or risk tolerance, which minimizes the cost of the
most frequent events �q�1�. Examples of these functions for
different values of q are shown in Fig. 2. We also introduce
a “dynamic” variation in the model which allows q to vary
with time, making the agents more risk averse immediately
after a large blackout followed by a decaying aversion; this
variation is described in Sec. V.
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The operators are designed to make a decision after a
given number of days—we have varied the period between
30 and 100 days—regarding the maintenance schedule and
the upgrade amount. This choice allows us to average the
utility function over a reasonable number of days and avoid
its daily high volatility. At the each of each period, each
operator makes the decision of what value to use for replace-
ment time and rate of upgrade for the next period, making
this decision by examining the following:

�1� the monthly averaged utility of the last few periods and
�2� the best averaged utility in the past.

The operator �agents� then tries to optimize this by ran-
domly varying the replacement time and the upgrade incre-
ment of the system a fixed amount positively or negatively
from its best performance in order to find a possible im-
provement. Although the agents do not communicate among
themselves, they clearly interact implicitly. If one of them
changes a basic parameter, the other responds by adapting to
the new situation. An example of the evolution of the param-
eters over time is shown in Fig. 3.

IV. NUMERICAL RESULTS OF A SCAN
OVER CONSTANT VALUES OF Q

We have carried out numerical studies using multiple
calculations for each set of parameters. The agents do most
of their learning at the beginning of the calculation, and this
phase of operation is strongly influenced by the random
events occurring at those times. Therefore, longer calcula-
tions do not help much in improving statistics; it is better to
do multiple calculations. In what follows, we use ten runs for
each set of parameters.

We have carried out calculations for several values of q
in the interval 0.5�q�2 from very risk-averse to strongly
risk-taking operation. For each value of q, the calculations
have been carried out for 106 days.

The first agent, the one controlling the replacement time,
reduces the time between replacements as q decreases and it
moves from risk-taking to risk-averse behavior. The replace-
ment time is reduced more than an order of magnitude as the
agent moves from operation with q=2 to operation with
q=0.5, as shown in Fig. 4. In going from normal operation
q=1 to risk-averse operation q=0.5, the second agent in-
creases the rate of upgrade. This change in parameters is
consistent with the movement toward a risk-averse attitude.
It is less clear why we observe the change in optimized be-
havior of the second agent in going from normal operation to
risk-taking operation �q=2�. There is some increase in the
rate of upgrade, which occurs in part to compensate for the
increased number of failures due to the large replacement
times chosen by the other agent.

The consequences of the agents’ choices of operational
parameters are very significant. In going from risk-taking
operation to risk-averse operation, the frequency of the cas-
cades is strongly reduced, as shown in Fig. 5. This reduction
in frequency leads to a reduction in the number of compo-
nents that fail per unit time, which is also shown in Fig. 5.
These results appear to fulfill the goals of a risk-averse op-
eration by minimizing the failures and their occurrences. It
should be noted that these improvements actually bear an
increased cost; therefore the optimal values of the utility
functions are reduced as q decreases.

FIG. 2. �Color online� The function � characterizes the perception of how
bad a failure is as a function of the size �which is roughly the inverse of its
frequency� for four cases ranging from risk averse q=0.5 to risk taking q=4.

FIG. 3. �Color online� An example of the time evolution of the agent con-
trolled parameters ��R and �� for a typical case.

FIG. 4. �Color online� The equilibrium control parameters as a function of
q, the risk comfort parameter, from strongly risk averse �q=0.5� to strongly
risk taking �q=2�.
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Despite the increased cost, these results seem to endorse
a risk-averse operation of the system. However, there is a
problem. Although the averaged number of failing compo-
nents is reduced, the probability of an extreme event in-
creases. Here, we characterize an extreme event as an event
in which more than half of the components of the system
fail. In our calculation the system size is 1000; therefore an
extreme event corresponds to 500 failing components.

We can evaluate the probability of an event in which
more than 500 components fail for each of the values of q in
the scan. The result is plotted in Fig. 6. We can see a sys-
tematic increase in the probability as q decreases. This
change in the probability of an extreme event is a result of
the change in the probability distribution function �PDF� of
the event size. Once again, we measure the event size by the
number of components that fail during a single cascading
process.

These changes in the PDF are clearly shown in Fig. 7
where we have plotted the corresponding PDF for three dif-
ferent values of q: 2, 1, and 0.5. In this figure, we see that the
power tail for q=2 has disappeared and the PDF has a dif-
ferent functional form from the other two operational re-

gimes. In going from normal operation to risk-averse opera-
tion the decay index of the power tail goes from 1.8 to 1.45.
Clearly, under risk-averse operation, the system appears to be
operating in a more critical state.

In moving from risk-taking to risk-averse operation not
only the distribution of failures changes but also the dynam-
ics. The clearest manifestation of the change is the change in
the long-range time correlations. The risk-taking regime
leads to persistence over long time scales while the risk-
averse regime leads to antipersistence. The Hurst exponent
as operation moves from q=2 to 0.5 changes from 0.6 to 0.3,
as shown in Fig. 8. This is consistent with the idea that the
operator in a risk-averse regime is trying to avoid all failures.
Another way of looking at the effect of risk perception is
with a utilization function. Following Kim and Motter16 we
construct such a function, as shown in Fig. 9. Our utilization
function is the load over the capacity and because the model
does not resolve subday time scales, the utilization we are
capturing can be thought of as the peak for the day. We can
see only a weak effect of the changing of q; however, there
does appear to be a peak in the utilization at moderate risk
taking values of q �around q=1.5�. This would suggest once

FIG. 5. �Color online� The frequency of failures and number of components
failed per unit time both increase as the operation moves from risk averse
�q=0.5� to risk taking �q=2�.

FIG. 6. �Color online� Probability of large events decreases as operation
moves from risk averse �q=0.5� to risk taking �q=2�.

FIG. 7. �Color online� PDF of failure sizes shows heavier tail as operation
becomes more risk averse �q=0.5�.

FIG. 8. �Color online� The Hurst exponent �H� goes from persistent
�H�0.5� to antipersistent �H�0.5� as operation is moved from risk taking
�q=2� through normal to risk averse �q=0.5�.
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again that risk aversion is not the most effect operational
tactic. We should note that the actual values for the utiliza-
tion should not be compared to those of Kim and Motter
because of the daily peak limitation we mentioned
previously.

V. RISK-AVERSE OPERATION AS A REACTION
TO AN EXTREME EVENT

Another possible way in which risk aversion may affect
the operation of infrastructure systems is when a risk-averse
policy is the reaction to some extreme event. In what fol-
lows, we are going to incorporate such possibility into our
generalized cascade model by making the exponent q as a
function of time.

We will use the following formulation of the problem.
We start with q=1.0. If an event of size S, greater than a
given threshold Sth, occurs at time t0, then q falls to q0=0.5,
and then evolves in the following way:

q�t� = 1 + �q0 − 1�exp�− �t − t0�/T0� . �6�

We choose q0=0.5 because we want a risk-averse reaction to
the event. The parameter T0 is the time after which the sys-
tem �agent� has “forgotten” the event. In the present calcula-
tions we take T0=500 days. Later, we will discuss the effect
of changing this characteristic memory decay time.

We have carried out a scan over possible values of the
event threshold value Sth. As before, for each threshold
value, we do ten calculations in order to accumulate good
statistics over the various events and agent behavior re-
sponses to those events.

The choice of the operational parameter for each differ-
ent threshold value is consistent with the risk-averse attitude
of the agents, as we have seen in Sec. IV. This is shown in
Fig. 10, where we plot the average value of � and �R as a
function of the event threshold. Here, the averages are taken
over the full length of the simulations, that is 106 days, and
over the ten different simulations for each set of parameters.

As the threshold for the event triggering the risk-averse
reaction decreases, the system operates in a risk-averse mode

of operation for a longer time. Therefore decreasing the
threshold lengthens risk-averse operation relative to normal
operation. As the risk-averse operation gets longer, we see a
reduction in the replacement time and an increase in the rate
of upgrade, as shown in Fig. 4.

Note that when the threshold is above 750 there is no
effective threshold at all because there are no events greater
than this size. Therefore all such thresholds are equivalent
and they serve as the reference case for normal operation.

What are the consequences of the change in behavior of
the agents? As they operate in a risk-averse mode for longer
periods of time, corresponding to lower thresholds, there is a
clear reduction in the frequency of the cascades, as we have
seen in Sec. IV. Figure 11 illustrates that point: as the value
of the threshold is reduced, the frequency decreases.

The situation is somewhat different with regard to the
number of failures per unit time, which we have also plotted
in Fig. 11. We can see that for large thresholds, for which
only a few events trigger the risk-averse attitude, there is a
decrease in failures per unit time because of the decrease in

FIG. 9. �Color online� The utilization appears to have a maximum with risk
taking behavior. Although the uncertainties make any strong statement im-
possible and the actual value does not change much, there is an apparent
maximum near q=1.5.

FIG. 10. �Color online� The average value of � and �R as a function of the
“learning” event threshold for the system that forgets about events after a
given decay time.

FIG. 11. �Color online� Frequency of failures and number of failed compo-
nents and a function of the threshold for risk-averse behavior. This plot
suggests there may be an optimal threshold for such behavior which mini-
mizes both the frequency and size of the failures.
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frequency of the events. However, as the risk-averse attitude
is triggered more often, that is, for smaller thresholds, the
increase in the average size of the events compensates for the
decrease in frequency and eventually the number of failures
per unit time is higher than in the reference case. As we saw
in Sec. IV, risk-averse operation increases the probability of
extreme events and this causes an increase in the number of
failures if a risk-averse attitude is triggered too often. This
suggests that there might be an optimal threshold for the
onset of risk-averse operation.

We want to examine the effect of risk-averse operation
on extreme events in more detail. To do so, we analyze sepa-
rately the period of time during which the agents are risk
averse, distinct from the period when they are not risk
averse. Using the reference case, we can calculate the prob-
ability of an event larger than 500. From this probability, we
calculate the expected number of extreme events in the two
phases of operation for the different thresholds. These results
are compared to the real number of extreme events obtained
with those calculations. The results are plotted and compared
in Figs. 12�a� and 12�b�. We can see that in general risk-
averse operation leads to a higher number of extreme events
during both phases, the risk-averse phase and the one follow-
ing afterward. From these figures, we see that the increase is
clearly more dramatic during the risk-averse phase.

Risk-averse operation affects the PDF of the cascade
sizes, as we have seen in Sec. IV. In Sec. IV, we have shown

the PDF of the event sizes for the reference case, q=1. We
have used a sample of 106 cascades in the calculation of the
PDF. Here, we examine the same quantity selecting cases
with thresholds 600, 500, and 400. For each case, we have
combined the data of ten different calculations during the
periods of risk-averse operation. This gives samples of
34 000, 80 000, and 134 000 points, respectively. In Fig. 13,
we show these PDFs for these cases.

We can see that all PDFs have a region governed by a
power law, but each clearly has a different decay index. In
the reference case, the PDF falls with an exponent 
1.8,
while for risk-averse operation the decay index is about 
1.4
for the three cases plotted. The three risk-averse cases have
the same slope; the only difference is in the value at which
the algebraic tail region begins. As the threshold decreases
this value also decreases and the region of the power tail
widens. The change in the PDF is clear. This result again
shows that risk-averse operation brings the system to a more
critical operating point.

The PDF for operation with a constant q=0.5 is identical
to the PDF calculated during the risk-averse operation for the
case of threshold 600, see Fig. 14. The case with threshold
600 is a case with very few regions of risk-averse operation

FIG. 12. �Color online� Number of extreme events �larger than 500�
�a� during risk-averse operation �top� and �b� between risk-averse operation
�bottom� compared to expected events if there is no risk-averse operation.

FIG. 13. �Color online� PDFs of threshold of 600, 500, and 400 and refer-
ence cases showing a heavier tail with the thresholding.

FIG. 14. �Color online� PDFs of q=0.5 and threshold of 600 cases, which
are virtually identical.
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and clearly these regions did not overlap. This result shows
the consistency between the constant q=0.5 operation and
intermittent operation in response to large events.

The results presented in this section depend on the
length of risk-averse operation. We have done a set of calcu-
lations for different values of the decay parameter T0, which
is a measure of how long the risk-averse reaction to an ex-
treme event lasts. These calculations have revealed two dif-
ferent regimes. For small values of the decay time, T0�500
days, the time is too short for the agents to carry out suffi-
cient learning and adapt to the new situation, and the results
are somewhat erratic. For large values of the decay time,
T0�500 days, the response is consistent with the previous
results. An increase in the decay time has the same effects as
a decrease in the threshold value because it represents an
increase in risk-averse operation.

VI. CONCLUSIONS

In this paper, we presented a simple model of the opera-
tion of an infrastructure system. This model is a generaliza-
tion of the CASCADE model, which has been studied in
detail in the past. This generalization transforms the CAS-
CADE model from a probabilistic model to a dynamic
model.

The dynamic evolution of the system over a long time
scale is governed by a daily increase in consumer demand
that raises the overall load on the system and an engineering
response to failures that involves upgrading of the compo-
nents. The system is controlled by adjusting two parameters:
the upgrading rate of the components � and the replacement
time of the components �R. Two agents operate the system by
each selecting one of those parameters.

The utility functions used by the agents to optimize per-
formance incorporate some perceptions of the events that
affect the decision making of the agents. The agents are char-
acterized by three aspects of their �social� behavior:

�1� their risk-averse and risk-taking attitudes while operat-
ing the system;

�2� their response to large events, which can trigger a
change in their behavior; and

�3� the effect of learning time on adapting to new
conditions.

These three agent behaviors affect the performance of the
infrastructure system.

In going from risk-taking to risk-averse operation there
is a reduction in the frequency of failures and in the number
of failures per unit time. However, risk aversion brings an
increase in the probability of extreme events. During risk-
averse operation, the PDF falls off with a smaller exponent
than that found in normal operation. This is in general a very
unwelcome change because large events are of much higher
cost.

When risk-averse operation is triggered in response to
extreme events, we obtain similar results as we find in the
case of continuous risk-averse operation, but the probability
of extreme events can be even higher than in the continuous
operation if this reaction is triggered too often, that is if the
threshold for entering risk-averse operation is relatively low.

Finally, one of the parameters that seem to be most im-
portant in determining the effectiveness of the agents is the
learning time they are allocated after their behavior changes.
If the time to react to changing conditions is too short, the
agents have difficulties finding optimal operational condi-
tions.
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